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Generative AI is the most important invention of the last 100 
years - full stop.  That is saying a lot and yet is not an 
exaggeration.  Its existence, capabilities and immediate societal 
impact are far beyond anything most of us had dreamed 
possible.  It is as if a massive undersea earthquake has occurred, 
a tsunami has formed and is racing towards the shoreline, and 
things as we know them - in the tech space and beyond - will 
never be the same again.

Marc Andreessen said it most succinctly:  AI Will Save The 
World. Andreessen shows the path to a vastly improved world.  
Like all major milestones in technology before it, life is 
transformed in ways that lift people out of poverty, give them 
access to opportunity, reduce toil and enable further innovations.   

Our older children will remember two worlds:  life before large 
language models and life after them. Younger children will not 
know a world where you cannot have a conversation with AI – in 
fact, they will have those conversations all day, every day, as they 
go throughout life and education.  The effect will be even more 
profound than "before vs. after the Internet" and even "before vs. 
after the iPhone."  

Generative AI tools are particularly important because they 
accomplish things that I, as a computer scientist and engineer, 
never actually thought possible: they are capable of  synthesizing 

net-new information and insights, literature -- even images, 
songs and videos.  It is as if we have unlocked something that 
feels like it should be impossible but yet somehow is very, very 
real.

A year ago, I was invited to co-present with AWS at re:Invent 
2022. One of the engineers presenting with me did a live 
demonstration of CodeWhisperer.  He built, launched, and used 
an infinitely-scalable serverless application capable of finding 
and describing dogs in a collection of photographs – and did all 
of this in about five minutes, with AI producing most of the code 
based on his stated intent.  There were audible gasps in the 
room.  It was a very tough act to follow, as you can imagine, as 
nearly no one had seen generative AI at this point.

Fast forward just a single year and the world looks completely 
different.  At every trade show and conference, generative AI is 
the only thing on the agenda.  At the bar, at parties, at family 
get-togethers, and certainly in the business media, there is one 
topic that has been top-of-mind from the moment OpenAI 
shocked the entire world by releasing ChatGPT.

It is also worth noting that this is the first time in history that a 
major, disruptive innovation has been instantly accessible to the 
entire connected population of the planet – billions of people – 
rather than subject to "trickle-down" economics.  Anyone and 
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everyone can use these tools, even with the simplest of 
smartphones or tablets.  This results in a massively-parallel wave 
of innovation, a warp-speed cycle of Darwinian evolution, and 
possibly a flywheel that will only continue to accelerate.

In short, this represents the opportunity of a lifetime.  It is as 
important as the invention of electricity and the first electric light 
bulb.  Understanding and being able to apply this technology will 
be a mandatory job skill for professional-class jobs in a matter of 
years. 

Those who embrace it early will ride the giant tsunami wave.  

Those who fight or ignore it will almost certainly be flattened by 
it.

The tsunami is racing towards shore at hundreds of miles per 
hour.  There is no way to put the toothpaste back in the tube or 
uninvent the atomic bomb. The technology is already in the wild, 
open-source in some cases, and can be leveraged on even a 
modern laptop computer or smartphone.   

Each of us has a decision to make.  Do we ride the wave?  Do we 
turn our backs to it and hope it isn't real?  Do we run for the hills, 
despite being clearly far too late to reach them?

As I see it, there is only one reasonable option, and that is to 

learn as much as you can, as quickly as you can, about 
generative AI and its implications.  

Most importantly, you need to work with these tools day-to-day, 
finding reasons to incorporate them into your workflows and 
companies.  There is no substitute for direct experience.

The BRIGADE book is an excellent resource to get you started on 
such a journey, no matter your technical level. The authors - JV 
and Debbie - are two of the nicest and best people I’ve had the 
pleasure of working with. I am not surprised at all that they 
delved into this emerging new technology and created this 
fantastic resource, and then released it to the public.

If you are unsure how to get started, or want a guided tour into 
the various nooks and crannies of generative AI for yourself or 
your entire company, the BRIGADE book will help you learn to 
ride this incoming giant tsunami wave.

Enjoy the surfing, and buckle up – this is going to be a very 
bumpy, but incredibly exciting time in human history.  The world 
will literally never be the same, and what we have seen thus far is 
only the beginning.
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Generative AI is one of the most important and impactful technologies in 
recent memory.

Large language models (LLMs) in particular have unlocked incredible 
capabilities that at first may seem like they previously only existed in 
science fiction - from being able to understand slang, analyze complex 
problems, follow tasks, show creativity, and just generally being 
“human-like” in responses.

In the enterprise, generative AI offers a lot of potential benefits:

➔ Operations, products and services infused with generative AI can 
lead to incredible efficiencies and new capabilities.

➔ More secure and reliable software and infrastructure through 
generative AI assistance across the DevOps pipeline.

➔ Boosting human capital by making employees more productive 
through generative AI enablement, as well as enabling internal 
support departments like HR to better analyze and understand 
employee issues.
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Not everything is rosy, of course, as it always is with new technology. 
LLMs are resource hogs, demanding huge amounts of GPU memory (and 
thus, many expensive GPUs in a cluster) in order to inference at scale.

LLMs also aren’t infallible, and can be “confidently wrong” or hallucinate, 
presenting wrong information as correct and in an authoritative manner. 

But the potential benefits are far too valuable, and these downsides can 
be managed and mitigated.

Generative AI is something that the enterprise cannot - and must not - 
ignore.
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Generative AI is a required journey for the enterprise

No matter where you are, what your company offers or what market you 
compete in, generative AI presents an almost “do or die” choice. If you 
don’t go on this journey, well, your competitors will, and you’ll soon find 
yourself in the unenviable position of having to fight with competitors 
whose operations, products, services and human capital are all boosted 
with generative AI, making them more productive, reducing time to 
market, and perhaps even cutting key costs through superior 
decision-making enabled by generative AI analytics. The gap in 
technology will eventually be so large that you wouldn’t be in a fair fight 
anymore.  It’ll almost be like an 18th century army - swords, horses and 
muskets - going to battle against modern mechanized infantry, with 
modern guns and armored vehicles. You don’t want to be the one stuck 
holding the muskets.

In this book, we  - JV Roig and Debbie Bastes, a pair of IT & Cloud 
professionals who dove into generative AI - present a roadmap for 
successful enterprise adoption of generative AI to unlock those 
aforementioned benefits. We also share some experiments we’ve done 
and insights derived, relevant to the needs of enterprises in this 
generative AI journey.
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The Generative AI roadmap

Going through the generative AI journey is 
a requirement, but how do you actually 
start?

No one becomes an expert overnight, so 
don’t worry. What matters is you start, 
have a plan to sustain the effort, and a 
reasonable, sensible plan.

The generative AI roadmap presented here 
is one such sensible plan. It shows a 
journey from unsophisticated public model 
use, all the way to customized private 
models from fine-tuned foundation 
models. There’s also the goal of a DevOps 
pipeline for engineering discipline and 
operational excellence. The culmination: a 
Center of Excellence for Generative AI, 
for an org-wide, cross-disciplinary 
approach to reaping the benefits of 
generative AI.

BRIGADE | Chapter 01: Introduction



Kickstarting your generative AI journey

Alright, with the roadmap in hand, how do you start?

I know, there’s a veritable firehose of information about generative AI 
across the internet, and even more daily updates. It’s daunting even just 
figuring out how to start, or how to filter what’s useful or not in an 
enterprise setting.

The rest of this book covers Levels 0 - 5 of the generative AI roadmap, to 
help get your various engineering / software development teams into the 
generative AI journey and producing value:

Chapter 2 offers an introduction to prompt engineering - why it is trickier 
than expected, how to engineer prompts to make them more reliable, 
and resources you can use to practice and develop this skill and go even 
deeper. 

Chapter 3 tackles integrating generative AI capabilities into your own 
applications using public models through hosted services, such as 
OpenAI’s  GPT 3.5 and GPT 4.
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Chapter 4 discusses private models - why use private instead of public 
models, and popular hosting services you can use for your own private 
models, such as Hugging Face and Sagemaker.

Chapter 5 goes a little more in-depth on foundation models, a concept 
that Chapter 4 deals with only in passing. Some popular foundation 
models are discussed here, along with running them locally. Some 
interesting experiments for different enterprise use cases are presented 
here, along with some very important cost analysis.

Chapter 6 deals with Retrieval Augmented Generation (RAG), a way to 
quickly enable your chosen LLM (be it a public or private model) to work 
with proprietary data that may be necessary for its intended function 
(e.g., your own internal company policies so that it can serve as a chatbot 
for employee concerns)

Chapter 7  ends this current journey with specialized smaller private 
models in order to reduce costs and increase performance for LLM 
deployments. A more in-depth enterprise cost analysis is presented here 
that improves upon the cost analysis in Chapter 5 using new concepts 
discussed here.
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CHAPTER 2: PROMPT ENGINEERING
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ChatGPT, with its chatbot-like features makes it easier for everyone to interact 
with a Large Language Model. A prompt is the initial message or input that we 
provide to LLMs like ChatGPT, which in turn generates an output. The input can be 
a question, an instruction, a complex problem, or any piece of text. A good 
prompt is clear, concise, and provides enough context for the model to generate
a meaningful response.
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The power of prompt engineering

Prompt engineering is the practice of crafting, refining, or designing prompts to 
elicit specific responses or behaviors from language models. Since the way we 
frame a question or instruction can greatly influence the quality of the model's 
response, prompt engineering has become an essential skill when working with 
models like GPT.

Effective prompt engineering allows us to leverage large language models by 
formulating detailed inputs that guide the model’s responses to align with our 
specific use cases. 

We might not always receive the desired response on our first attempt, but it is 
crucial to develop a systematic process for adjusting and iterating on our 
prompts, learning from each interaction with the model.

In this chapter, we’ll use ChatGPT to practice prompt engineering. If you haven’t 
already, just head on to https://chat.openai.com/ to create a free account and 
follow along our prompt engineering journey.
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Use case 1: Creating marketing descriptions

Let’s explore a few examples as we try to use prompt engineering to achieve our 
desired results. Our first mission? Instruct ChatGPT to create compelling 
marketing descriptions for furniture products in an online store backend, as seen 
below.

Debbie Bastes | JV Roig Bastes-Roig Insights into Generative AI Development for the Enterprise

Let’s begin by crafting a basic prompt to request for a marketing description, say 
for a dining table:

Prompt v1: “Generate a compelling and detailed description for a dining table.”

8

Result: As seen on the left.

From a single sentence as 
input, ChatGPT generated 
a detailed write-up, 
including a product name, 
its features, materials and 
design descriptions.

While we got a creative 
response, it is too verbose 
for our use case because 
we only need a short 
description for our product 
database.
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Back to our example – we already have a list of products with their respective 
features and specifications, so let’s choose one to include in our prompt. This 
way, the description will be tailored to our product, not teeming with random 
features that might mislead our customers. 

As we add more elements to our prompt, we can use delimiters like triple 
backticks to separate distinct sections of our input. In other use cases, you might 
want to include sample marketing descriptions, detailed factsheets, or even 
marketing guidelines that can help shape the tone, style and format of the output. 

So for v3 of our prompt, we’ll include an instruction section, and we’ll use 
delimiters to specify which section contains the details about the product. Let’s 
see how this affects the result.

9

Let’s try to improve our prompt: if we need short product blurbs instead of a 
one-pager, a way to do  that is to set a word or sentence limit. Let’s take it further 
by specifying which features of the product we want to focus on.

Prompt v2: “Generate a compelling and detailed description for a dining table in 
under 100 words, emphasizing its durability and design.”

Result:

That’s more like it! With just a few tweaks, ChatGPT produced a description we 
can use for our system. 

The length of the generated output can also have inference time and cost 
implications when we are already managing our own GenAI-powered 
applications. We'll delve deeper into this in subsequent chapters.
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Now, the description maintains its creativity without being overly verbose, and it 
incorporates the product specifications we provided. 

We’re achieving better results, but we shouldn’t stop here. We should test the 
prompt multiple times to ensure consistency and try to generate descriptions for 
other products.

Creating prompt templates like this comes in handy when handling various inputs 
for the same task. We can test the same instructions, swap the product and check 
for consistent results. Alternatively, we can refine the instruction section and 
compare the generated descriptions for the same product. Yes, our journey 
doesn't end here; we're just getting started!

And don't worry; when managing hundreds of products and testing numerous 
iterations, there's no need to paste our prompts into a ChatGPT window 
individually. We'll learn a more efficient method in Chapter 3, so stay tuned! But 
before that, let’s move onto our next use case.

Prompt v3: 
Generate a compelling and detailed description of a product for a marketing 
website of a furniture store, in under 100 words. The product name and 
specifications are provided below which are delimited with triple backticks. 

Product:
```
Product Name: Aspen Dining Table
 Style: Rustic
 Color Variations: Oak, Maple
 Material: Solid Wood
 Furniture type: 4-seater Dining Table
 Product Category: Dining Room Furniture - Aspen Series
Weight in kilograms: 12
Length in meters: 2
Width in meters: 0.76
```
Result: 

BRIGADE | Chapter 02: Prompt Engineering
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Use case 2: Sentiment analysis

Now that we have a better understanding of prompt engineering, let's try another 
enterprise use case. This time, we'll use ChatGPT to determine the sentiment of 
customer reviews for our products.

Drawing from the techniques we already learned, we'll use delimiters to specify 
the customer review text which we want to be analyzed. For added context, we 
will also include the name of the product being reviewed.

Prompt v1-A: 
What is the sentiment of the following product review, which is delimited with triple 
backticks?

Product Name: Bliss Rocking Chair
Review text: 
```
I am absolutely in love with it! The chair is not only beautiful, but also incredibly 
comfortable. The rocking motion is smooth and soothing, making it perfect for 
relaxing after a long day. The craftsmanship is top-notch, with sturdy construction 
and high-quality materials. I also appreciate the attention to detail in the design, 
such as the curved armrests and the ergonomic backrest. Overall, I highly 
recommend it to anyone looking for a stylish and comfortable addition to their 
home. It truly brings joy and relaxation to my life!
```
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Result:

Not bad for our first attempt! The model not only identified the correct sentiment 
but also summarized the review and highlighted what the customer liked about 
our product. 

Be wary though - while GPT-3.5 and GPT-4 excel at simple sentiment analysis 
tasks, certain real-life customer reviews can be tricky to analyze, especially if 
they don't express strong emotions, contain sarcasm or use informal language. 

Let’s take a look at another example using the same prompt template, but for a 
different product review.

 

11
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While the analysis provided seems sound, it is even longer than the review itself. 
In situations like this, we can guide the LLM further by specifying the output we 
want. In version 2 below, we’ll provide 3 options to ChatGPT: Positive, Negative or 
Neutral.

Prompt v2:
Here is a product review from a customer, which is delimited with triple backticks.

Product Name: Kyushu Calm Lounge Sofa
Review text: 
```
The quality of the fabric on this couch is okay, but it's not the most comfortable 
seating I've experienced. It looks nice in my living room, though.
```
Overall sentiment must be one of the following options:
A) Positive
B) Negative
C) Neutral

What is the overall sentiment of that product review?

Result:

 

Prompt v1-B: 
What is the sentiment of the following product review, which is delimited with triple 
backticks?

Product Name: Kyushu Calm Lounge Sofa
Review text: 
```
The quality of the fabric on this couch is okay, but it's not the most comfortable 
seating I've experienced. It looks nice in my living room, though.
```

Result:

That doesn’t seem like a definitive answer, because the review doesn’t convey 
strong emotions unlike our first example. 
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This time we got a straightforward answer based on the choices we provided. 
However, we lost some details in the original review - it's useful to know what our 
customers like or hate about our product. ChatGPT can extract the relevant 
information so we don’t have to go through hundreds or thousands of reviews 
ourselves. Let's do that by asking for a breakdown of the positive and negative 
comments for our product.

Prompt v3:
Here is a product review from a customer, which is delimited with triple backticks.

Product Name: Kyushu Calm Lounge Sofa
Review text: 
```
The quality of the fabric on this couch is okay, but it's not the most comfortable 
seating I've experienced. It looks nice in my living room, though.
```

What is the sentiment of that product review?
Identify the product being reviewed.
Enumerate the positive and negative aspects of the product review.
The response should have the following elements:
        - Product name
        - Review Sentiment (Positive/Negative/Neutral)
        - Positive comments about the product (Enumerate)
        - Negative comments about the product (Enumerate)

Result: 

Okay, so now the model properly labeled the sentiment and extracted pertinent 
information from the review. This will be easier to process when we’re 
consolidating results and creating reports. 

Another way to improve results is to provide good examples of actual reviews it 
might encounter in production, paired with the expected outputs. This technique 
is known as one-shot or few-shot prompting. While it might be unnecessary for 
more powerful models like GPT-4, in Chapter 5 you’ll see how it can drastically 
improve performance in smaller models. There are also other valuable insights 
from experiments on model performance in that chapter, so don’t miss it!
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Prompt v1-A:Use case 3: Generating sample customer feedback

For our final use case, let's generate sample customer reviews to put our freshly 
engineered sentiment analysis prompts to the test. This is yet another area where 
LLMs excel — they are masters at producing text that is indistinguishable from 
human writing, creating synthetic data suitable for a variety of applications. 

Let’s create a prompt template with the Product Name and Star Rating as input so 
we can vary the samples. We want a variety of sample customer feedback texts 
that exhibit different sentiments (e.g., positive, negative, neutral) so we can 
thoroughly test our sentiment analysis prompt. 

Here are two examples using the same prompt template and product but 
different star rating.
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In v2, we’ll specify the output format to be a Python dictionary containing the 
product name and review text. Depending on your application, you can choose to 
specify the output format as something you can process easily. 

Prompt v2:

Prompt v1-B:
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If you're up for a challenge, consider refining the prompts further to enhance the 
model's ability to generate more nuanced outputs. Keep in mind that real-world 
feedback can often be more subtle and complex than the straightforward 
examples we've encountered so far. Therefore, it's crucial that the system can 
effectively handle various nuances, including sarcasm, indirect language, and 
mixed emotions.

Consider our third example where we added instructions and asked for 
comments with idiomatic expressions and varying levels of subtlety. Notice how 
the style of the reviews changed, but GPT-4 might have gone a little overboard 
with the idioms. Now try to improve on that and see what kind of reviews you’ll 
get. Afterwards, use these sample reviews to test the sentiment analysis prompt 
in use case 2.

Prompt:

Debbie Bastes | JV Roig Bastes-Roig Insights into Generative AI Development for the Enterprise 16

Result:
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Below, we've compiled a list of the prompt engineering techniques we employed 
in our examples:

➔ Provide explicit instructions: "Give a detailed description of this dining table, 
emphasizing its durability and design."

➔ Limit response length: "Provide a marketing description of this dining table in 
under 40 words."

➔ Cite examples: This is also called one-shot or few-shot prompting. We can 
set the style, tone and format of the desired output through our examples. 

➔ Use delimiters to indicate parts of the prompt: You can use delimiters like 
<begin> <end>, ```,””” to specify distinct sections of the prompt. This is 
essential in the case of more complex instructions or multi-line requests.

➔ Ask for output in a specified format.

➔ Create prompt templates.

 

Wrap up

Equipping ourselves with prompt engineering skills enables us to harness the 
power of GenAI models. As we saw in our examples, by continuously refining our 
prompts, we can align an LLM’s capabilities with our specific business objectives.

Try experimenting on your own!  The prompts we utilized in this chapter can be 
accessed here in the BRIGADE GitHub companion repo.
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What’s the Future of Generative AI? An Early View in 15 Charts 
A visual explainer from McKinsey about the future of generative AI. 
Tables and graphs instead of walls of text.
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Mitigating LLM Hallucinations: A Multifaceted Approach
Dealing with hallucinations is one of the most difficult challenges in almost every generative AI solution. 
This blog post is a must-read for prompt engineers.

INTERESTING READS AND RESOURCES

Prompt Engineering: How to Talk to the AIs 
This is a course by Xavier Amatriain, VP of Engineering, AI Product Strategy at LinkedIn. 
Great insights into prompt crafting for image generation and large language models! 

Prompt Engineering a Prompt Engineer 
Catchy title. One of the more recent papers I saw about developments in the field of prompt engineering. Worth a 
look if you’re interested in the  the rapid innovations in prompt engineering.
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https://amatriain.net/blog/hallucinations
https://www.linkedin.com/learning/prompt-engineering-how-to-talk-to-the-ais/talking-to-the-ais
https://huggingface.co/papers/2311.05661


CHAPTER 3: 
PUBLIC MODELS INTEGRATION
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So far we’ve practiced prompt engineering using the ChatGPT browser interface. 
Now that we’ve prompt engineered capabilities we like, how do we integrate 
these capabilities into our own systems and applications?

OpenAI provides paid API access to the models that power ChatGPT: GPT-3.5 
and GPT-4. If we want to integrate the generative AI capabilities we 
prompt-engineered in the last chapter, this is the way to go about it.

Getting started with OpenAI API integration

To begin, we must first gain access to OpenAI’s API by following these steps:

1. Sign up: Head over to the OpenAI API portal, sign-up for an account and 
complete the verification steps. 

2. Create an API key: Go to your account’s API keys page and create a new 
secret key.  These keys are your credentials for accessing the OpenAI API and 
should be kept confidential.
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3. Download the SDK: OpenAI provides a convenient Software Development Kit 
(SDK) that simplifies interaction with the API. You can install this SDK in your 
preferred programming environment. If you are using Python, for example, 
you can install the OpenAI package using pip:

 

4. API key configuration: Set up your environment variables to store your API 
keys. It's important not to hard code your keys directly into your application 
for security reasons. Remember that this key is a sensitive piece of 
information—treat it as you would a password.

For our examples, let’s create a local .env  file, and store our API key there. 
Copy the text below and replace the value with your newly created secret key 
from Step 2.

Note: In a production environment, use secrets management services to handle 
sensitive data securely. We will revisit secure API key storage later when 
discussing AWS cloud infrastructure.
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# Once you add your API key below, make sure to not 
share it with anyone! The API key should remain 
private.
OPENAI_API_KEY=‘Add your OpenAI API Key here’

$ pip install openai



3. Test your setup: Once everything is installed and configured, let's run this 
snippet of code to verify that the setup is successful. This simple Python 
example sends a prompt to the API and prints the response: 
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#import modules needed for Chat GPT comms

import os

import openai

# read local .env file

from dotenv import load_dotenv , find_dotenv

_ = load_dotenv (find_dotenv ()) 

# Your API key from OpenAI

openai.api_key  = os.getenv('OPENAI_API_KEY' )

completion  = openai.ChatCompletion .create(

  model="gpt-3.5-turbo" ,

  messages=[

    {"role": "system", "content": "You are a helpful 

assistant." },

   {"role": "user", "content": "What were the main former 

capitals of Japan?" }

  ]

)

print(completion .choices[0].message)

Run that script, and you should see a response with the information you 
requested, verifying that your integration is successful. Assuming you saved that 
in a file called openai_test.py, then you’d trigger it like so:

$ python3 openai_test.py

If you got a response, then 
congratulations!

Now we’re ready to integrate the 
power of LLMs into our 

applications!
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Creating marketing descriptions through the API

Now that we’ve successfully set up the OpenAI SDK, we can start implementing 
our previous prompt-engineered use cases. 

Let’s go through the components of our Python script.  First, we’ll need to import 
the necessary modules, including the OpenAI package we just installed.

Using the python-dotenv package, let’s read the local .env file to retrieve our API 
key. This API key is necessary to authenticate requests to the OpenAI API.
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# Import modules needed for OpenAI API communication

import os

import openai

Next, let’s define a function named call_ai whose task is to send a prompt to the 
chat completions API and receive a response. It takes in two parameters: prompt 
and model (with a default value of "gpt-3.5-turbo"). 

It’s time to add our prompt—we’ll use the marketing description example from 
Chapter 2 and store it in a multi-line string variable named prompt. 

(All sample codes in this chapter can be found in our GitHub repo.)

# Call the Generative AI Service like OpenAI

def call_ai(prompt, model="gpt-3.5-turbo"):

    messages = [{"role": "user", "content": prompt}]

    response = openai.ChatCompletion.create(

        model=model,

        messages=messages,

        temperature=1,# this is the degree of  

                      # randomness of the model's output

    )

    return response.choices[0].message["content"]

# Read local .env file

from dotenv import load_dotenv, find_dotenv

_ = load_dotenv(find_dotenv())

# Set the API key from the environment variable

openai.api_key  = os.getenv('OPENAI_API_KEY')
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# Create a prompt to send to the Generative AI Service

prompt = f"""Generate a compelling and detailed 

description of a product for a marketing website of a 

furniture store, in under 100 words. The product name and 

specifications are provided below which are delimited 

with triple backticks.

Product:

```

Product Name: Aspen Dining Table

Style: Rustic

Color Variations: Oak, Maple

Material: Solid Wood

Furniture type: 4-seater Dining Table

Product Category: Dining Room Furniture - Aspen Series

Weight in kilograms: 12

Length in meters: 2

Width in meters: 0.76

```

"""

Let’s print the prompt to the console so we can see what is being sent to the API. 

What’s left is to pass our prompt to the function, retrieve the model-generated 
text, and store it in a variable named response. Let’s also print it to the console to 
see the output.

Finally, let’s run our script:

print('Prompt: %s' %prompt)

response = call_ai(prompt)

print('Response:\n%s ' %response)
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Sentiment analysis through the API

Alright, our marketing description generator is done. That wasn’t so hard at all!  
Let’s move on to sentiment analysis. This is extremely important to integrate into 
a real program, instead of just being done through the ChatGPT web interface. 

In an enterprise setting, the volume of feedback that you will need to analyze is 
simply too much for a person (or even multiple persons) to just copy-and-paste 
individually into a ChatGPT window, and then copy-paste results into a document 
afterwards. 

That’s too tedious, expensive, and impossible to scale. What if you have 1,000 
comments, feedback or complaints to analyze daily?

Let’s see how we can implement our prompt-engineered sentiment analysis 
capability using the API.
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# Set the API key from the environment variable

openai.api_key  = os.getenv('OPENAI_API_KEY')

# Call the Generative AI Service like OpenAI

def call_ai(prompt, model="gpt-3.5-turbo"):

    messages = [{"role": "user", "content": prompt}]

    temperature=0.5

    response = openai.ChatCompletion.create(

        model=model,

        messages=messages,

        temperature=temperature, # this is the degree of 

randomness of the model's output

    )

    return {

        'body': response.choices[0].message["content"],

        'context': {

            'ChatGPT model': response.model,

            'temperature': temperature,

            'ChatGPT token usage': response.usage,

        }

    }

# Import modules needed for OpenAI API communication

import os

import openai

# Read local .env file

from dotenv import load_dotenv, find_dotenv

_ = load_dotenv(find_dotenv()) # read local .env file
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Most of that code will be familiar from our first use case - importing the necessary 
modules, retrieving the API key and sending a request to the OpenAI API. You’ll 
notice we slightly modified our call_ai function to now return the ‘context’, along 
with the model generated text.  

The context provides details on the AI model used, temperature setting, and the 
token usage.  This data is useful for usage monitoring, prompt testing and model 
performance benchmarking and can be retrieved and processed separately.

The API call actually returns additional data, along with the model response. The 
model and token usage of our context comes from the ChatCompletion object 
returned by our API call. We won’t cover all of them in our example, but you can 
refer to the official OpenAI documentation for more details. 

As for our use case, we’ll focus on the token usage as it is the basis for the usage 
cost of our application. This part of the object provides information about how the 
request counts against the API usage. It typically includes:

➔ prompt_tokens: The number of tokens used in the prompt [input tokens].

➔ completion_tokens: The number of tokens generated in the completion 
[output tokens].

➔ total_tokens: The sum of prompt_tokens and completion_tokens.
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We’ll be able to compute the usage cost of our sample use case later after we run 
our script, so let’s continue!

Here we’ll define two variables and set their values. First is the information about 
our product (product_name) and the accompanying review from our customer 
(review_text), which we want to be analyzed by the LLM. Right now, it is 
hardcoded in our script for simplicity but typically our data will come from an 
external data storage (like a customer review database). 

Now we’re ready to assemble our prompt and print the response. We will pass our 
customer review data, along with the prompt when we execute an API call.

product_name = "Kyushu Calm Lounge Sofa"

review_text="""

The quality of the fabric on this couch is okay, but 

it's not the most comfortable seating I've experienced. 

It looks nice in my living room, though.

"""

BRIGADE | Chapter 03: Public Models Integration

https://platform.openai.com/docs/guides/gpt/chat-completions-api


prompt = f"""Here is a product review from a customer, which is delimited with triple backticks.

Product Name: {product_name}

Review text:

```

{review_text}

```

What is the sentiment of that product review?

Identify the product being reviewed.

Enumerate the positive and negative aspects of the product review.

The response should have the following elements:

        - Product name

        - Review Sentiment (Positive/Negative/Neutral)

        - Positive comments about the product (Enumerate)

        - Negative comments about the product (Enumerate)

"""

# Do something with the AI response

print('Prompt: %s' %prompt)

response = call_ai(prompt)

print('Response:\n%s ' %response['body'])

print('\nContext:\n%s ' %response['context'])
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Running our completed script 
outputs the following information to 
the console:

➔ The prompt sent to the AI model 
(gpt-3.5-turbo).

➔ The body of the response, which 
includes the analysis of the 
product review based on the 
prompt. We can see the model 
determined the review sentiment 
to be Neutral, and enumerated 
the positive and negative 
comments from the customer.

➔ The context, providing details on 
the AI model used, temperature 
setting, and the token usage.

(sample output on next page)
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Notice the prompt_tokens and 
completion_tokens in the Context output at 
the bottom.

Those refer to our input and output token 
usage, respectively. We’ll use those figures for 
estimating our costs.



API Usage Cost Estimate

As promised, let’s try to compute our usage cost using the token usage data 
returned by our function. Using our handy dandy GenAI cost estimator, all we 
need to do is choose our platform (OpenAI) and model (gpt-3.5-turbo 16K), 
choose the Custom Tokens tab, and  then type in our total input and output 
tokens. 

The sample computation below is for 1,000 requests (input tokens = 151 x 1,000, 
output tokens = 81 x 1,000; see stats from sample output in previous page). 
Running our script to analyze ~1,000 customer reviews will cost us around $0.27. 
The actual usage cost will vary slightly, since the review text length and model 
response length will be different per customer review. 

Debbie Bastes | JV Roig Bastes-Roig Insights into Generative AI Development for the Enterprise 28

Generating human-like feedback through the API

Our final prompt engineering use case from Chapter 2 was generating human-like 
feedback as fake data.

Now, we can integrate that into a script, so we can actually use this capability to 
augment traditional faker libraries. 

(Faker libraries are dev utilities commonly found in popular programming 
languages, designed to make it easy for developers to create 
fake-but-realistic-looking data to aid in testing, quality assurance, and product 
demos. While these are good with names, dates, places and numbers, these aren’t 
really designed to create fake human-looking text, and mostly just end up using 
“lorem ipsum” random words. This is a good use case for generative AI 
augmentation)

Just like in the previous section where we implemented sentiment analysis, this 
means we’d be able to use this capability at scale, avoiding the tediousness of 
repeatedly using the ChatGPT window each time we need one piece of 
human-looking fake text. (Would any dev want to do that 100 times when the 
team needs a product demo with at least 100 fake records that include customer 
feedback?)

We’ll be creating two components this time - a custom Python module named 
GenAI_faker and a Python script to read the product catalog and make use of the 
GenAI_faker module to generate sample reviews. 
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GenAI_faker library
We first need to create the GenAI_faker Python module that provides 
functionality to generate fake product reviews by using the OpenAI API. The 
module also uses the traditional faker library to create realistic-looking names 
and generate random star ratings for products. 

Imports and initial setup:
➔ We’ll import the following modules: openai, os, time, json, and Faker from 

the faker library.

➔ Then create an instance of Faker for generating fake data.

➔ We’ll then define an empty string api_key to store the OpenAI API key. Our 
other Python script will retrieve our key and pass it along later.
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Next, the call_ai function makes another appearance here to facilitate the API 
call. Everything is the same as our last example.

# Import modules needed for OpenAI API communications

import openai

import os

import time

import json

from faker import Faker

fake = Faker()

api_key=''

# Call the Generative AI Service like OpenAI

def call_ai(prompt, model="gpt-3.5-turbo"):

    messages = [{"role": "user", "content": prompt}]

    temperature=0.5

    response = openai.ChatCompletion.create(

        model=model,

        messages=messages,

        temperature=temperature, # this is the degree of 

randomness of the model's output

    )

    return {

        'body': response.choices[0].message["content"],

        'context': {

            'ChatGPT model': response.model,

            'temperature': temperature,

            'ChatGPT token usage': response.usage,

        }

    }
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Finally, let’s add a new function called product_review. Here's a detailed 
breakdown of its functionality:

➔ It takes a payload dictionary expected to contain details about a product, 
particularly with keys for Furniture_Name and Furniture_ID.

➔ It then generates a basic product_review dictionary with keys for 
"Product ID", "Product Name", "Name of Reviewer", and "Star Rating". The 
"Product Name" and "Product ID" values are pulled from the payload, and the 
"Name of Reviewer" and "Star Rating" are generated using the standard faker 
library.

➔ The prompt for the OpenAI API call is constructed using Product Name and 
Star Rating. This prompt asks the AI model to create a customer review in a 
Python dictionary format.

➔ It then calls the call_ai function with this prompt to get a review text from the 
OpenAI API.

➔ The response from the AI is expected to be JSON-formatted text that includes 
a product review. This is parsed from the JSON and added to the 
product_review dictionary.

➔ If an error occurs during the process, it is caught, printed to the console, and 
the function returns None. Otherwise, the function returns the completed 
product_review dictionary containing the generated review.
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(code continues on next page)

def product_review(payload):

    product =payload.get('Furniture_Name', 'Unknown Product')

    #create product review for each product in the catalog

    product_review = {

        "Product ID": payload.get('Furniture_ID', 'Unknown 

Product ID'),

        "Product Name": payload.get('Furniture_Name', 'Unknown 

Product'),

        "Name of Reviewer": fake.name(),

        "Star Rating": fake.pyint(min_value=1, max_value=5),

    }

    prompt = f"""

    Create a sample customer review for the ``{̀product}```.

    It can be positive, negative or neutral sentiment given the 

provided Star Rating.

    `` {̀product_review['Star Rating']}```

    The response should be in a python dictionary format with 

the following elements:

    - Product Name

    - Product Review

    """

BRIGADE | Chapter 03: Public Models Integration



Fake_reviews.py
And just like that, we already have our GenAI_faker Python module! Time to 
create the fake_reviews python script and bring it all together.

This script is designed to read a CSV file containing a product catalog and 
generate fake human-looking product reviews using the GenAI_faker module we 
just made. Here's what each part of the code does:

Import modules:

➔ We start by importing  the GenAI_faker library we just made

➔ We import the os module to interact with the operating system and read the 
environment variables.

➔ Lastly,  we’ll use the csv module to read from and write to CSV files.
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Environment variables:
We already know this section – this is where we load the environment variables 
from a .env file. Next we just set the api_key attribute of GenAI_faker to the 
value of the OPENAI_API_KEY we just retrieved.

Parsing a CSV file:

Next, let’s define a function that opens a CSV file named product_catalog.csv, 
which contains a list of available products, as shown in the example above. This 
function returns a list of dictionaries, each representing a product.

# Read local .env file

from dotenv import load_dotenv, find_dotenv

_ = load_dotenv(find_dotenv()) # read local .env file

# Set the API key attribute of the GenAI_faker library 

GenAI_faker.api_key  = os.getenv('OPENAI_API_KEY')

    try:

        GenAI_review_text = call_ai(prompt)

        product_review['Product Review'] = 

json.loads(GenAI_review_text['body'])['Product Review']

    except Exception as e:

        print(f"An error occurred: {str(e)}")

        return None

       

    return product_review

BRIGADE | Chapter 03: Public Models Integration



Let’s build our product_catalog dictionary by calling our function above. It should 
now contain a list of product dictionaries from our CSV file. After that we just 
iterate on each product on the list and let the GenAI_faker library do its magic. 
Below we just use it as we would a traditional Faker library, except this time it’s 
powered by GPT-3.5.

Finally when we run our script, we’ll see the AI model generated reviews for each 
product entry on the catalog. Here is one example of the output showing a review 
for the product named Serenity Bed:
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In just a few seconds, the model can generate several customer review samples 
for us which we can use to test our sentiment analysis prompt from the previous 
section.

def parse_file_to_dictionary():

    with open('test_data/product_catalog.csv', 'r') as f:

        reader = csv.DictReader(f)

        data_dict = [row for row in reader]

        return data_dict

product_catalog = parse_file_to_dictionary()

#create product review for each product in the catalog

for product in product_catalog:

    print("Product: \n", product)

    product_review = GenAI_faker.product_review(product)

    print("Product Review: \n", product_review)
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Integrating OpenAI capabilities with your AWS infra

We’ve successfully implemented generative AI capabilities in our own code using 
the OpenAI SDK through their API. What would a real-world implementation in 
the Cloud look like?

The diagram on the right shows a generic architecture for generative AI 
integration in an application that runs on AWS:

➔ First, we securely store our API keys in a service like SSM Parameter Store.

➔ Our program lives in a Lambda function, and this function needs to be 
configured with both the OpenAI SDK and boto3 (the AWS SDK for Python). 
If you aren’t using Lambda, you could just imagine this as your favorite 
compute service instead - for example,  your application could be an EC2 
instance, or a container running in EKS.

➔ In the real-world, our prompts need to be enriched or augmented with 
domain-specific business data (for example, customer feedback from our 
customer service database). In this diagram, that’s what the DynamoDB is 
for - a stand-in for whatever backend holds your domain-specific business 
data (it could be in any database, but we always personally prefer defaulting 
to serverless services, hence our Lambda and DynamoDB choices here).

➔ The last component, of course, is the generative AI service. In our case so 
far, this is the OpenAI API for GPT-3.5 or GPT-4.
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Whenever our AWS-hosted application needs to do generative AI tasks, the 
execution flow is as follows:

1. The program retrieves the appropriate OpenAI API key from SSM 
Parameter Store.

2. The program assembles the optimal prompt to execute for the task (c/o 
prompt engineering).

3. Part of this prompt assembly is injecting data into the prompt that came 
from this system’s database, or a different external data store we manage. 
This could be a traditional database such as Postgres, a NoSQL database 
like DynamoDB, or even object storage like S3.

4. With the prompt fully assembled, the program now executes an API call 
against the generative AI service endpoint.

5. The program waits for the response, and then does something with that 
response. For example, perhaps the resulting sentiment analysis output is 
stored back into the same customer service database where the customer 
feedback came from.

You might have noticed that the Generative AI Service component was labeled 
with “Public or private model endpoint”. What are these private and public 
models, and what are their key differences, you ask?

Those are fantastic questions, and exactly what we’ll discuss in the next chapter!
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Generative AI for Programming Education: Benchmarking ChatGPT, GPT-4, and Human Tutors
A study comparing the effectiveness of GPT-4 and ChatGPT with human tutors in various coding scenarios.
The findings provide valuable insights into areas where further development and fine-tuning of generative AI 
models are needed to enhance their effectiveness in educational settings.

OpenAI DevDay 2023 Announcements
Check out OpenAI's announcements from DevDay 2023! Learn about the enhanced GPT-4 Turbo, now offering a 
larger 128K context window at lower prices, and the new Assistants API that eases the creation of AI-driven apps.

INTERESTING READS AND RESOURCES

ChatGPT Prompt Engineering for Developers
An awesome course on prompt engineering using the OpenAI API. I liked the hands-on experience in a Jupyter 
notebook environment, allowing me to apply the concepts immediately, tweak the examples and run them in 
real-time 
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How People Create—and Destroy—Value with Generative AI
Discover how generative AI is reshaping value creation and the pitfalls of its misuse in a compelling exploration of 
its potential and limitations in various applications.

https://huggingface.co/papers/2306.17156
https://openai.com/blog/new-models-and-developer-products-announced-at-devday
https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/
https://www.bcg.com/publications/2023/how-people-create-and-destroy-value-with-gen-ai


CHAPTER 4: 
PRIVATE MODELS
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Our journey so far has taken us through prompt engineering using ChatGPT, and 
using OpenAI public models - like GPT-3.5 Turbo and GPT-4 - to integrate 
amazing generative AI functionality into applications. In this chapter, we’ll 
discuss another sort of generative AI model we can use - private models.

Private vs public models

In this discussion, we classify different generative AI offerings as private or public 
depending on how we consume them and deploy them:

➔ In a public model, like GPT-4, the LLM is hosted by a third-party (the service 
provider, in this case OpenAI), and our only access is through an API. That 
third-party, by nature of the setup, may end up receiving and storing 
confidential or proprietary information through API requests. For example, if 
you used ChatGPT, or integrated GPT-3.5 into your application like we did in 
Chapter 3, and you provided confidential data in the prompts (for example, 
medical information of customers, or proprietary corporate data), then you 
might be in breach of some of your regulatory or compliance duties. (We’re 
not lawyers, this is not legal advice, and this will vastly differ based on your 
location, so be sure to consult your legal department if you have compliance 
concerns).
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➔ In a private model, the LLM is hosted in our own environment (which could 
be a local machine, an on-prem data center, or a cloud account we own) or in a 
VM instance that is dedicated to us. Either way, we are the sole users of that 
LLM, and we effectively never send and store private data outside of our own 
control and jurisdiction. Additionally, none of our prompts and interactions 
can be used to train the model (which is another concern when using public 
models).

Why would I want private models?

So far ChatGPT and OpenAI’s stuff is all super cool, right? Well then, why would 
we ever need to consider using private models?

1. You have no control over public models.
What if your production system relies on the public LLM’s current behavior, 
but then it gets updated and no longer responds as your production system 
expects? (i.e., the current way you have engineered and tweaked your prompts 
is no longer effective and breaks production.) You might suddenly find your 
production system broken without warning. 

Imagine your servers’ operating systems or your databases - what if you 
didn’t have the ability to disable automatic updates so that you can safely test 
updates first before choosing to deploy to your production systems? That’d be 
hell for any DevOps and sysadmin team. That’s not a far cry from what you get 
when you are relying on a public model, since they are SaaS and outside of 
your control. They’ll get updated when the provider updates them.
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2. Data privacy issues may prevent you from using a public model at all.
For example, ChatGPT isn’t seen as HIPAA compliant (see: 
https://www.hipaajournal.com/is-chatgpt-hipaa-compliant/ and 
https://priceschool.usc.edu/news/chatgpt-doctors-data-privacy-hipaa/). We 
aren’t lawyers, we aren’t going to be listing every possible compliance or 
privacy regulation that you might trip over. But know that since you send 
private, confidential data to a third-party, it may trigger compliance issues and 
may prevent you from using a public model for specific use cases.

3. Protecting sensitive company secrets.
If your role deals with a lot of proprietary corporate information, you may also 
be prevented from using public models to assist you. This is very similar to 
data privacy issues and regulatory compliance, except now the pressure isn’t 
external but internal - your own corporate policies may prevent you from 
specific uses of a public model. For example, it may be ok to use a public 
model to help you do sentiment analysis on public feedback, but it may not be 
ok to use for helping draft your third quarter business plan using sensitive 
company secrets and confidential financial data.

In cases where public models pose any sort of compliance risk, you’ll have to rely 
on private models. Strict control of the update policy may also drive you towards 
a private model, giving you the ability to handle LLM updates essentially like every 
other non-SaaS software update in your stack (e.g., scheduled patching & having 
test environments to heavily QA new patches first).

Now that we know why we might need private models, the next question is how. 
The answer can’t be “well, we’ll just build our own ChatGPT-like LLM”, because 
that’s a herculean effort.

Foundation models to the rescue

Fortunately, organizations don’t need to reinvent the wheel and create their own 
GPT-4 model from scratch.

Instead, we can use foundation models as the basis of our private LLMs.

Foundation models are generative AI models pre-trained on a huge amount of 
diverse data, and can be used for a variety of different tasks, including tasks the 
models weren’t specifically trained for.

As of the time of this writing, some of the most popular Open Source foundation 
models include Llama 2 (https://ai.meta.com/llama/), Falcon 
(https://falconllm.tii.ae/) and Mistral (https://mistral.ai/).

We’ll delve a little deeper into foundation models in the next chapter. 

For now, we’ll focus on how we can deploy foundation models to enjoy our own 
private model for compliance, privacy, or data security concerns.
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SageMaker JumpStart

Amazon SageMaker JumpStart is the fastest way to get started on testing 
private models in AWS, using a wide variety of foundation models. There’s more 
to SageMaker JumpStart than just large language models similar to GPT-3.5 or 
GPT-4, but we’ll only focus on how SageMaker JumpStart can allow us to pick a 
model, get a private instance up and running, and then try it out immediately and 
test prompts against it - all in just minutes with no specialized expertise required!

Deploying Mistral 7B-instruct
Let’s go through the end-to-end experience of trying out SageMaker JumpStart to 
test one of the best performing “small” large language models released so far (as 
of the time of this writing): Mistral 7B. (That “7B”, as in generally-accepted model 
naming convention, refers to the number of its parameters - in this case, seven 
billion.) While most sophisticated LLMs are measured in tens of billions of 
parameters or more - e.g., Llama 2 13B, Falcon 40B, Llama 2 70B, and even 
Falcon 180B - Mistral comes in a very light single-digit billion parameters, while 
outperforming or matching models heavier models that are 2-3x its size, making 
for a cost-effective, lower-latency model.

Let’s get started!

(Note: This activity will add SageMaker-related charges to your AWS bill. If you 
follow along, be careful and make sure to clean up all resources after you are 
done. Consult the SageMaker pricing page to review potential costs.)

1. First, we need access to SageMaker Studio, which needs a SageMaker 
Domain. For personal tinkering (not actual production use), you can just follow 
the Quick setup procedure from the SageMaker console. (AWS Web Console -> 
SageMaker -> Domains -> Quick setup). That’s usually a breeze, but in case 
you need help, the relevant documentation is here. 
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2. With a domain created, we can now access SageMaker Studio through that 
domain. In the list of available domains (AWS Web Console -> SageMaker -> 
Domains), click on your domain. You will then see a list of available user 
profiles. Click on the Launch button on the right of your chosen user profile, 
and select “Studio”.

3. SageMaker Studio will start loading (might take a minute, don’t worry about it). 
Once it finishes loading, click on SageMaker JumpStart on the left nav bar, 
and you’ll see something like the screenshot below. Believe it or not, we’re 
essentially half done already!
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4. In the Search box on the right, type in “Mistral”, and then choose “Mistral 7B 
Instruct”. You’ll notice there are two Mistrals here - the vanilla “Mistral 7B”, 
and “Mistral 7B Instruct”. The difference is that the Instruct version (that 
nomenclature means it is “instruction-following”) is a fine-tuned version of 
the vanilla one, and that’s what we want right now because it behaves more 
like the ChatGPT models that we’ve tried so far. We may end up preferring 
vanilla models (non-instruction-following) for more advanced use cases, but 
that’s not something we need to think about right now.

5. We can now quickly deploy Mistral 7B Instruct from the model tab that 
appeared. Under Deploy Model, click Deployment Configuration. You’ll see 
that the default hosting instance is a measly 2xlarge in size. That’s the beauty 
of small models - you can run them very efficiently! Just accept all the 
defaults and click the Deploy button.
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6. If you get an error saying “ResourceLimitExceeded”, it’s because default 
quotas for GPU-powered instances are 0. If your account has never used GPU 
instances before, then you’ll run into this error. Don’t worry, you just have to 
make a quota increase request for the desired instance.

Here’s a quick guide to making a quota request if you haven’t done so before. 

a. Switch back to your normal AWS web console tab (leave your browser tab 
that has SageMaker Studio for now). 

b. Search for and select “Quota increase request”, type in “sage” under the 
AWS services search box, and click Amazon Sagemaker. 

c. Under Service quotas, type “g5.2xlarge” in the search box. The quotas will 
be filtered to just one or a few entries, including “ml.g5.2xlarge for 
endpoint usage”, which is the quota that was preventing us from 
deploying the JumpStart endpoint. 

d. You’ll see that both the Applied and Default quota values are 0. Click the 
quota name, and then click “Request increase at account-level” to make a 
request. 

e. We only need 1, so just requesting for 1 will maximize the chances of a 
super quick turnaround through automatic approval. 
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7. When your SageMaker JumpStart deployment is successful (it usually only 
takes a couple minutes for smaller instances and models), we can now try it 
out in a notebook. Below the Endpoint Status section, you’ll see a new 
section appear called Use Endpoint from Studio. Click the Open Notebook 
button.

8. You’ll be greeted by a pop-up asking you to set up an environment, using a 
t3.medium instance. Just click Select to accept these defaults. Essentially, 
what you have in this notebook page is a quick tutorial and actual runnable 
code. You are now free to experiment and do some prompting!

9. You can copy most of this code to a local Python file so you can experiment 
without the need of a paid notebook instance, using your favorite IDE. (You 
will still be charged for the cost of the endpoint instance itself, of course)

Now that we have an endpoint and sample code for querying that endpoint, let’s 
reimplement the features we created in Chapter 3 so that they use our private 
model endpoint.
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Marketing Description Generator
On the right is a snippet from our new marketing description generator code using 
our SageMaker endpoint instead of the OpenAI service. 

(The complete sample code can be found in: 
https://github.com/debbiebastes/BRIGADE/blob/main/private_models/SageMake
r_JumpStart/Mistral-7B-Instruct/Marketing_Description_v2.py)

Our imports at the very top have changed from our original OpenAI version, since 
we need to use different libraries now (for example, no more OpenAI SDK, and 
instead we need the AWS SDK for Python).

In line 9, we specify the region where our endpoint is, and then in line 12 we 
specify the endpoint name from our JumpStart deployment.

We still have the call_ai function, but we’ve modified it so that it prompts the way 
our chosen model (Mistral 7B) expects to be prompted.  It relies on two helper 
functions, query_endpoint (which uses the AWS SDK to communicate with our 
SageMaker endpoint) and format_instructions (which does the Mistral-specific 
prompt formatting).

We defined a third helper function, print_instructions, in the sample code, but 
that’s not really essential - it’s just to print out our prompt and response during 
our tests.
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Running our code results in something similar to this:

If you’re following along and see similar output, congratulations! You’ve just 
successfully deployed and used a private model! 

Now let’s try that again on our second use case: sentiment analysis.
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The rest of the code after that is unchanged, until we get to the very end:

The way we print out our results here just changed a bit, but it’s an insignificant 
change and not really important for actual production deployments. 

A note on authentication: If you are running the code on a Lambda function, EC2 
instance, or any other compute resource in your AWS account, those resources 
need to have the correct permissions to use SageMaker endpoints. If you are 
running locally, you should install the AWS CLI and configure it with a user that 
has SageMaker permissions.
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If you’re following along and getting frustrated a little by friction from 
SageMaker, like needing to deal with permissions, domain setup, 
quotas… I feel you!

These things can be really annoying, especially for someone who 
might not necessarily be interested in the Cloud itself, and just want 
to get going with generative AI.

Don’t worry, after SageMaker, we’ll explore an alternative platform 
that promises to be a bit more frictionless for non-Cloud experts!
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Sentiment Analysis
On the right is a snippet from our new sentiment analysis code using our 
SageMaker endpoint instead of the OpenAI service.

(The complete sample code can be found in: 
https://github.com/debbiebastes/BRIGADE/blob/main/private_models/SageMake
r_JumpStart/Mistral-7B-Instruct/Sentiment_Analysis.py)

You’ll notice it’s pretty much the same as our earlier Marketing Description 
Generator code - that’s because how to use a generative AI endpoint doesn’t 
really depend on the type of prompt. The only difference between these two 
Python files are the prompts themselves.

Running our code results in something similar to this:
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Human Feedback
OK, you’ve seen two examples of how we modified our code to use SageMaker 
endpoints instead of OpenAI.

You’ve also noticed that using SageMaker endpoints in both cases didn’t really 
result in different code to handle those two different use cases (just different 
prompts).

As an exercise, try to reimplement our final sample use case, the Human 
Feedback generator, to use SageMaker endpoints instead of OpenAI.

Here’s the code again for the original OpenAI version: 
https://github.com/debbiebastes/BRIGADE/tree/main/public_models/OpenAI_A
PI/synthetic_data_generation

Hugging Face

Hugging Face is an organization that’s built a wonderful open community for 
machine learning. They also provide a good platform for experimentation. 

If you don’t already have an AWS account and don’t really want to get one right 
now, Hugging Face is a great alternative.

Sign up for an account, or sign in if you already have one, and let’s get started!
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Deploying Mistral 7B-instruct
Just like in the previous SageMaker JumpStart section, we’ll try out what we can 
do using the Hugging Face service by deploying Mistral 7B Instruct and then 
doing some prompting against it.

1. In the search bar at the top of the Hugging Face UI, search for “Mistral” and 
choose the Mistral-7B-Instruct model

https://github.com/debbiebastes/BRIGADE/tree/main/public_models/OpenAI_API/synthetic_data_generation
https://github.com/debbiebastes/BRIGADE/tree/main/public_models/OpenAI_API/synthetic_data_generation
https://huggingface.co/
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2. You’ll find yourself in the Mistral 7B Instruct model card page. It might look 
sort of familiar - it’s a bit like the SageMaker notebook from earlier. It has 
information about the model and some sample code, but it’s not a Jupyter 
notebook (you can’t run code directly in that page). From here, you can quickly 
deploy an inference endpoint though. On the right, click the Deploy button 
and choose Inference Endpoints.

3. In the Create a new Endpoint screen, almost every default option is already 
good enough for us -  correct model import, clear endpoint name, instance 
configuration already preselects a cheap instance that is just large enough for 
the model (1x GPU with 24GB of VRAM, for only $1.3/hr as of the time of 
writing). 

The only thing you should change is the Automatic Scale-to-Zero config, and 
set it to “After 15 minutes with no activity”. This is for your safety. While you 
should make it a habit to always clean up Cloud resources when you are done, 
making this scale to zero after 15 minutes ensures that in case you 
accidentally leave an instance on, it’ll scale to zero (and be essentially 
unbilled) very quickly, saving you from potential bill shock.

Click Create Endpoint.

(see reference screenshot on the next page)
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4. You’ll be transferred to a page showing you the status of your endpoint. It will 
probably feel familiar if you’ve tried this already in SageMaker JumpStart, as 
it’s essentially the same experience.
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5. The screen will update when the inference endpoint is active, and it will 
show your Endpoint URL - again, very similar to our SageMaker JumpStart 
experience. And while there’s no functionality here to instantiate a Jupyter 
notebook with runnable Python code, the current page will already have a 
Test your endpoint section to test the endpoint live with ad hoc text 
generation, and just below that is sample Python / JS / cURL code you can 
use.

Now that we’ve got an active inference endpoint, let’s go reimplement our 
generative AI capabilities we created in Chapter 3, this time using our Hugging 
Face private model.

Now that we have an endpoint, and sample code for querying that endpoint, let’s 
reimplement the features we created in Chapter 3 so that they use our Hugging 
Face-hosted private model. 

To start, make sure to copy the Call Examples Python code on the screen. Check 
the Add API token box first before you do. By default, Hugging Face obfuscates 
your API token for safety (see screenshot on the left - instead of a real API token in 
the Authorization header, it is just XXXXXXXXXXXXXXXX). Checking the Add API 
token replaces the string of Xs with your actual API token.

You’ll need your API token so that you can call your inference endpoint from your 
local dev machine.

Marketing Description Generator
Here’s a snippet from our new marketing description generator code using our 
Hugging Face inference endpoint:
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(The complete sample code can be found in: 
https://github.com/debbiebastes/BRIGADE/blob/main/private_models/HuggingFa
ce/Mistral-7B-Instruct/Marketing_Description_v2.py)

You’ll notice it’s a lot simpler and shorter than its SageMaker counterpart - that’s 
because the Hugging Face backend service abstracts a lot of the prompt 
formatting for us. We don’t really have to do any of the Mistral-specific prompt 
formatting ourselves anymore.

Going through the changes one by one:

➔ There’s no proprietary SDK needed (no AWS or OpenAI SDK). All we need 
are two Python standard library modules, os and requests. (Lines 1 and 2)

➔ Remember the Hugging Face API token from the previous section, right after 
we deployed our inference endpoint? To avoid hard-coding it (bad practice), 
you should instead save it as an environment variable in your operating 
system, and then retrieve it using os.getenv(). (Line 5)

➔ We set our endpoint URL, the value of which came from our inference 
endpoint deployment. (Line 6)

➔ We set our headers as prescribed by Hugging Face. The bearer token is our 
API token, which authorizes our API call against our endpoint.

➔ We still have the call_ai function, with slightly different code compared 
with both the SageMaker and OpenAI versions.

The rest of the code is mostly the same, and only how we print out the generative 
AI response is slightly different, but again that’s an insignificant and 
inconsequential change.
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Running our script results in something similar to this:
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Woohoo! Congratulations!

Your first Hugging Face private 
model integration is successful!
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Sentiment Analysis
Here’s a snippet from our new sentiment analysis code using our Hugging Face 
inference endpoint:

(The complete sample code can be found in: 
https://github.com/debbiebastes/BRIGADE/blob/main/private_models/HuggingFa
ce/Mistral-7B-Instruct/Sentiment_Analysis.py)
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As you’d expect, it’s literally just the same as our Marketing Description 
Generator sample, except for the prompt itself.

Running our code gets us something like this:
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Human Feedback
OK, you’ve seen two examples of how we modified our code to use Hugging Face 
instead of OpenAI.

You’ve also noticed that using Hugging Face inference endpoints in both cases 
didn’t really result in different code to handle those two different use cases (just 
different prompts).

As an exercise, try to reimplement the Human Feedback generator to use 
Hugging Face instead of OpenAI. If you were already able to do this with 
SageMaker, you’ll likely find this to be a quick and easy (but hopefully still 
rewarding) exercise.

Here’s the code again for the original OpenAI version: 
https://github.com/debbiebastes/BRIGADE/tree/main/public_models/OpenAI_A
PI/synthetic_data_generation
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Generative AI with Large Language Models
Another hands-on course by DeepLearning.AI and AWS. Provides valuable hands-on experience in training, 
fine-tuning, and deploying models with Amazon SageMaker, ideal for anyone eager to implement generative AI 
technologies in practical settings.

 

Llama 2 on Amazon SageMaker a Benchmark
Over 60 different configurations of Llama 2 were analyzed across various Amazon EC2 instance types and load 
levels. The benchmark aimed to identify the most cost-effective, best latency, and best throughput deployment 
strategies

INTERESTING READS AND RESOURCES

Accelerate client success management through email classification with Hugging Face…
A leading FinTech company in Europe details how they implemented a natural language processing (NLP) model 
using Hugging Face transformers and Amazon SageMaker. The model efficiently classifies customer email 
inquiries, streamlining response processes and significantly reducing client waiting times.
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10X Coders Beware: Meta’s New AI Model Boosts Coding and Debugging for Free
Meta releases Code Llama, a foundation model designed to assist software developers in generating and 
debugging code. 

https://www.coursera.org/learn/generative-ai-with-llms
https://huggingface.co/blog/llama-sagemaker-benchmark
https://aws.amazon.com/blogs/machine-learning/accelerate-client-success-management-through-email-classification-with-hugging-face-on-amazon-sagemaker/
https://arstechnica.com/information-technology/2023/08/meta-introduces-code-llama-an-ai-tool-aimed-at-faster-coding-and-debugging/


CHAPTER 5: 
FOUNDATION MODELS
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Last chapter, we encountered foundation models during our discussion of private 
models.

Even without any private model concerns, foundation models are a critical aspect 
of any generative AI strategy because they will form the cornerstone of at least a 
portion of any scalable deployment.

Foundation models are adaptable for downstream tasks that they have not 
specifically been trained for. Upon experimentation, you may find some smaller, 
cheaper models can be easily tuned for some particular use cases you have. This 
could result in tremendous savings.

In this chapter, we’ll dive a bit deeper into foundation models, regardless of 
whether they are consumed as a public or private model.

Amazon Bedrock

If you went along and tried out both the SageMaker JumpStart and Hugging Face 
private model deployments, you might have felt that the SageMaker approach 
was noticeably more involved than the Hugging Face one. If you wished you had a 
more streamlined experience within AWS to let you try out various foundation 
models, then you’re in luck!

AWS has a newer service purpose-built for generative AI - Amazon Bedrock. 
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The Bedrock experience, you’ll find, is not that different from the OpenAI 
experience - models are consumed through an API call, you essentially manage 
no extra infrastructure to make these generative AI models work, and you are 
charged on a per-token basis. 

To give you a cheap and fast way to play around with foundation models, let’s 
quickly get started with Bedrock.
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Getting started with Bedrock
In your AWS management console, search for “Bedrock”.

When you first try out Bedrock, you’ll be informed you need to manage your 
model access and see this screen:

That shows you a list of base (foundation) models available. Click the bright 
Manage model access button so you can select which models you are interested 
in (or simply all of them) and then request for access.
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Don’t worry about costs - just requesting access does not incur any cost. Just like 
in OpenAI, you will be billed on a per token basis.

Sample use case - sentiment analysis on Bedrock
We’ve implemented our sentiment analysis use case in three different platforms - 
OpenAI, SageMaker, and Hugging Face. Let’s see how we can do it through 
Bedrock.

Here’s a snippet of our sentiment analysis code using Bedrock:

(The complete sample code can be found in: 
https://github.com/debbiebastes/BRIGADE/blob/main/public_models/Bedrock/Se
ntiment_Analysis.py)
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There really isn’t a lot new here, compared to the three previous 
implementations. 

This also uses boto3 (the AWS SDK for Python) like our SageMaker 
implementation, since this is an AWS service. We changed call_ai so that it uses 
Bedrock instead of Sagemaker (line 13).

Invoking a Bedrock LLM needs a specific modelID to identify which specific 
foundation model in Bedrock you want to query. In this example, we choose 
Cohere Command. (Look here for the official list of valid modelIDs: 
https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids-arns.html)

To actually send our prompt (lines 18-23), we send a properly formatted payload 
as a JSON string (c/o the Python standard library json module). In this case, we 
place our prompt in the prompt key, then we also set temperature, p, and 
max_tokens. 

Only prompt is required in this example, the rest are optional parameters we can 
use to tweak our results.

These optional parameters vary between the different foundation models 
available, so you’ll have to consult the doc for your chosen model. A good place to 
start is here: 
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_Invok
eModel.html#API_runtime_InvokeModel_RequestBody
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Now that we’ve got code working, let’s run the code:

And there we have the response by the Cohere Command foundation model, c/o 
Bedrock.

Unlike the SageMaker JumpStart approach, it’s quicker to get started, and a lot 
cheaper and safer for quick, small experiments. We never had to think about 
deploying any sort of inference endpoint, and we don’t have to worry about 
leaving a GPU-powered instance running and racking up a huge cloud bill.
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We don’t have quite the same level of choice of foundation models compared to 
SageMaker at the moment, but that will likely improve in the future.

If you want to experiment with foundation models, and you don’t necessarily 
need it to be a private model, Bedrock is a great first option.

If a foundation model you want isn’t in Bedrock yet, and you prefer the AWS 
ecosystem (for example, because of credits in your organization), then SageMaker 
JumpStart will get you up and running fast.

Otherwise, Hugging Face is a good option for finding and experimenting with 
thousands of possible foundation models - it’s a giant Open Source community!

Running LLMs locally through llama.cpp

Another way to test and experiment with foundation models is to simply run them 
locally, on your own machine. The ability to run small foundation models locally 
can enable you or your team to freely experiment on foundation models, without 
worrying about accidentally running up a cloud bill.

One way to do that is using llama.cpp - an Open Source project that supports a 
lot of the most popular foundation models, including Llama 2, Falcon, and Mistral. 
It also supports CPU-only inference, meaning you can play around with 
foundation models even if you don’t have a powerful GPU.
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Using llama.cpp, we ran some of the smaller variants of these foundation models 
in old and weak machines. For example, below are some of our CPU-only 
inference results using Llama 2 7b-chat with Q4_K_M quantization. (Don’t worry 
about quantization for now; we’ll get to that in a later chapter. All you need to know 
is that it lessens the memory requirement of a model  by a huge margin)
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Machine Prompt 
Evaluation

Prompt 
Response

Raspberry Pi 4 8GB
Yes, an RPi 4 w/8GB RAM, running Ubuntu OS.
Price: ~$75 (USD)

1.5
tokens/sec

0.7
tokens/sec

Almost ten-year old PC
CPU: Intel i5 4670 (release date: 2013)
RAM: 32GB DDR3
Price: <$200 for something this old, second-hand

9
tokens/sec

4
tokens/sec

Generic HP laptop
CPU: Ryzen 7 4700U (release date: 2020)
RAM: 32GB DDR4
Price: ~$800 

13
tokens/sec

6
tokens/sec

Ryzen 5000 PC
CPU: Ryzen 5 5600G
RAM: 128GB DDR4
Price (excluding GPU): >$1,000 USD
(This is Debbie’s main workstation!)

19
tokens/sec

8
tokens/sec

(table continues on next page)

https://github.com/ggerganov/llama.cpp


We share this table so you can see that it doesn’t necessarily take modern or 
expensive hardware to play around with foundation models locally. If even a 
lowly RPi4 can do it, then most likely whatever machine you have can probably do 
it too.

Everything there except the MacBook uses CPU-only inference. You can see the 
advantage that even a weak GPU gives you through the entry-level M1 MacBook 
Air’s performance - it’s a lot faster in prompt evaluation time (the speed at which 
it processes your instructions), and a bit faster in prompt response (the speed at 
which it generates its response) even compared to the latest PC. The flip side is 
that the entry-level MacBook Air only has 8GB of RAM (and that’s shared between 
the CPU and the GPU), drastically limiting the models it can even run at all. In 
some tests, it slowed to a crawl, meaning it ended up using swap space as it ran 
out of RAM (hence the note in its performance that it had as low as <1 token/sec). 
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Of course, having a GPU of any sort can give a really good boost. Here’s what 
happens when we enable GPU-inferencing on our respective workstations with 
that same model (Llama 2 7b-chat with Q4_K_M quantization):

Even with non-high-end GPUs, the performance boost is significant, well above 
any of the previous CPU-only data, and even significantly higher than the 
GPU-enabled entry-level MacBook Air.

The GTX 1650 in Debbie’s workstation only has 4GB VRAM, but llama.cpp is still 
able to make use of it to drastically boost prompt evaluation (from 19 -> 168 t/s, 
an almost 9x jump), with a respectable 2x boost in prompt response (8 -> 17 t/s).

The boost in JV’s workstation is even more drastic:  28 -> 1,100 t/s in prompt 
evaluation (an almost 40x jump), and  10 -> 68 t/s in prompt response (an almost 
7x jump).
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Machine Prompt 
Evaluation

Prompt 
Response

Ryzen 7000 PC
CPU: Ryzen 7 7800X3D
RAM: 64GB DDR5
Price (excluding GPU): >$1,000 USD
(This is JV’s main workstation!)

28
tokens/sec

10
tokens/sec

Entry-level M1 MacBook Air
CPU: Apple M1
RAM: 8GB
Price: $899

100
tokens/sec

(as low as <1 
token/sec)

13
tokens/sec

(as low as <1 
token/sec)

Machine Prompt 
Evaluation

Prompt 
Response

Ryzen 5000 PC
CPU: Ryzen 5 5600G
RAM: 128GB DDR4
GPU: Nvidia GTX 1650(entry-level GPU)

168
tokens/sec

17
tokens/sec

Ryzen 7000 PC
CPU: Ryzen 7 7800X3D
RAM: 64GB DDR5
GPU: Nvidia RTX 3070 (mid-range GPU)

~1,100
tokens/sec

68
tokens/sec



That discrepancy isn’t because the 3070 is a much faster GPU than the 1650 
(although it is). It’s because of the VRAM limit. Debbie’s 1650, having only 4GB 
of VRAM, could offload only 27/35 layers to the GPU. JV’s 3070, with double the 
VRAM, offloads the whole 35 layers to the GPU, so no layers are left at all for CPU 
inferencing, removing a massive CPU bottleneck.

Takeaways:

➔ Useful generative AI tasks (sentiment analysis, Q&A, problem 
recommendations, summarization, title recommendations…) can be run locally 
on inexpensive machines.

➔ You can even run on a Raspberry Pi, but of course that’d be super slow.

➔ The main factor for inexpensive local inferencing is the amount of RAM. The 
more RAM you have, the more kinds of models you can run. Note that 
performance won’t improve with more RAM (if you can already run a model 
comfortably with 8GB, adding another 8GB won’t make it faster). Faster RAM 
can help with performance, but that’s not really within the scope of our 
discussions right now.

➔ If you don’t have the budget for a big GPU or to pay for cloud servers, don’t let 
that stop you from personal experimentation, tinkering, and learning. 
CPU-only local inference works!

➔ Even modest entry-level GPUs can be a drastic accelerator. If you have any 
sort of Nvidia GPU, you’re in luck!
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Getting started with Llama.cpp
In general, using llama.cpp is a few easy steps. Here’s the high-level summary:

➔ Clone the llama.cpp repo at https://github.com/ggerganov/llama.cpp.

➔ Build (compile) the llama.cpp executables for your machine (it’s mostly a 
single step operation as you’ll see later).

➔ Download the model you want to experiment on. 

◆ If you want to get the Llama 2 7B model, then you’d clone their repo 
(https://github.com/facebookresearch/llama) and follow their download 
instructions

◆ For most other foundation models, they are likely available from Hugging 
Face, so just do a model search there. For example, you’ve already 
encountered the Mistral 7B Hugging Face repo in the last chapter, and you 
can clone from there.

➔ With llama.cpp and the model downloaded, you then have to convert the 
model to llama.cpp’s gguf format.

➔ (Optional, but recommended) Once you have the converted model, you can 
then quantize that model to make it smaller and fit in less RAM.

➔ With the gguf models, you can now run inference using llama.cpp.
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For the detailed steps:

➔ Here’s the README section of llama.cpp to help you get started: 
https://github.com/ggerganov/llama.cpp#get-the-code

➔ For CPU-only inference, here is the vanilla way to build llama.cpp: 
https://github.com/ggerganov/llama.cpp#build

➔ This is the build step we used in our own machines to make use of our Nvidia 
cards: https://github.com/ggerganov/llama.cpp#cublas 
If you have an Nvidia GPU, install CUDA and then follow that link.

➔ For converting to gguf, quantizing, and running inference: 
https://github.com/ggerganov/llama.cpp#prepare-data--run
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Some important parameters for llama.cpp inference:

➔ -n:  maximum number of tokens it should respond with. This is not an 
instruction to the LLM to limit its response, as if you told it “Limit your answer 
to 10 sentences or less”. Rather, when this limit is reached, the inferencing will 
simply stop. Even if the LLM had more to say, it would simply be cut off and 
stopped.

➔ -c: max context length. This is the maximum size (in tokens) your prompt can 
be. 

➔ -ngl: number of GPU layers to offload. Set this to the highest value your GPU 
can accommodate based on the model (that’s just trial and error). As you saw 
from our local inference results in the previous section, the more you offload, 
the better, especially if you can offload all the layers.

➔ -p: specify a prompt as a string in the command line.

➔ -f: specify a text file containing the prompt (the entire file contents will be the 
prompt)

On the left, you can see an example of a successful llama.cpp local inference.
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Insights from foundation model benchmarking 
experiments

We experiment ourselves using foundation models. In this section, we’re sharing 
some of these experiments and the interesting findings we gained from them.

For our own experiments, we created a simple Python-based infrastructure to 
help us run experiments and gather results - LLM_LocalBench (a totally creative 
name for something designed to benchmark LLMs running locally). It’s available in 
GitHub, if you want to see how we did our benchmarking experiments: 
https://github.com/jvroig/llm_localbench.

We maintain a separate repository where we store sample data for the 
benchmark (the set of prompts that the benchmark will run). That repository is 
here: https://github.com/debbiebastes/llm_localbench_data.

We separated the data from the benchmarking infra code just so we can maintain 
and tweak each one independently of the other. LLM_LocalBench_Data is just 
where we store our personal curated prompts - the prompts that we need as we 
continue our own exploration of generative AI. LLM_LocalBench itself is 
data/prompt-agnostic. 
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Benchmarking in the enterprise for go/no-go decisions
In the enterprise, in the real world, you would use something like 
LLM_LocalBench on your own curated data, which is based on your individual 
use cases. You wouldn’t rely on the sample prompts built-in with 
LLM_LocalBench (we ship that sample prompt data with it just so there’s 
something you can immediately test with out of the box).

This is important! You shouldn’t rely on the standard measures like perplexity or 
ROUGE or BLEU, or MMLU, to gauge whether your generative AI feature, based on 
whatever LLM, is ready for prod or not.

Rather, you should benchmark your LLM exactly according to the use case you 
expect it to serve. If you are planning to deploy a sentiment analysis feature, for 
example, then you should benchmark your LLM with sentiment analysis prompts 
that are close enough to the actual feedback you expect to get. An example of 
such a benchmark implementation would be to use the feedback your org has 
collected in the past month, quarter  or year. You could then compare the results 
you get from your LLM against human-labeled results (e.g., how your Customer 
Support team manually classified those feedback). This way, when you get any 
score (e.g., 90%), then you kinda know what it means, and that it’s based on a 
use case and data set that actually matches the expected deployment.

That’s not something you’ll get if you try to base your decision on measures like 
those you see in the Hugging Face leaderboard, which you’ll definitely encounter 
as you explore foundation models. That’s not to say they are worthless. Scores in 
some of those measures (e.g., MMLU) can help you narrow down which 
foundation models to try and experiment with, or you might have a use case that 
is already closely measured by one of the standard measures.
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In an enterprise environment, though, your QA for any LLM deployment likely 
must include benchmarks using real-world, historical data you have in your 
databases - e.g., past feedback collected from employees, or complaints from 
customers, or common queries from customers - so that you can have a solid 
measure that means something.

That’s not to say your LLM deployment will be perfect if you do that. Probably not, 
LLM behavior can be notoriously difficult to predict. But as with every software 
release you already have to QA, the rigorous, methodical QA process you need to 
have for LLMs isn’t there to make sure every deployment is 100% safe, bug-free, 
and flawless (because that’s impossible). Rather, it’s to minimize the possibility, 
and catch as many bugs as possible before the feature reaches customers.

Now, imagine your company wants various generative AI features into your 
internal systems:

➔ Sentiment analysis, to help analyze customer reviews of your products, 
including breaking down the reviews into positive and negative aspects.

➔ Article title suggestions for blog posts, to help your Marketing Department as 
they create content.

➔ Article summarizer to boil down articles into key points, meant to help 
employees with their internal upskilling

➔ Cloud assistant chatbot, meant to help your company’s Cloud 
engineers/architects with their tasks.
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These are some of the scenarios we imagined when we created DataV2, a small 
set of prompts for different use cases, to exercise Llama 2 variants using 
LLM_LocalBench to see what we’d uncover. In particular, we wanted to see how 
the small variants (7B and 13B) perform against their big brother (70B), 
especially with some smart prompt engineering.

Prompt engineering for sentiment analysis on small foundation models
Let’s start with sentiment analysis. We curated some product review feedback 
weaved into prompts (DataV2/Sentiment_Analysis). We prepared three different 
variants of the Llama 2 LLM (7B, 13B and 70B), and then used LLM_LocalBench 
to test the performance of these different models using our curated sentiment 
analysis prompts. Here’s what we found first:
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With a basic sentiment analysis prompt (the PT-SS01 to 03 txt files in DataV2 
Sentiment Analysis), we see that the biggest, most complex Llama 2 variant (70B) 
outperforms its smaller siblings. The smallest, 7b, performed the worst, but both 
it and the 13b model are nowhere near accurate enough to ever be pushed to 
production (58.33% and 66.67% respectively)

What does this mean for us? If we needed to use a foundation model for our 
sentiment analysis needs (perhaps to be deployed as a private model), does this 
mean we are stuck with the 70B model?

Let’s look at the comparative cost of hosting these different models. Let’s assume 
we are deploying these as private models through SageMaker, and let’s look at 
the cost of each for 100 hours: 

 

If we had to host the 70B model, we’d be stuck paying $2,000 USD for every 100  
hours. That’s almost 3x more expensive than 13B hosting, or over 13x more 
expensive than 7B hosting!
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That’s a lot of money. Instead of surrendering all that money immediately, we can 
apply prompt engineering to try to make the smaller models perform better.

First, let’s try to improve our basic sentiment analysis prompt by asking it for 
more details about the sentiment, instead of just a straight classification. (These 
updated prompts are PT-SL01 to 03 txt files.)

Here’s how the models fared using the updated prompts:

Well, that managed to improve 13B by a lot, almost 20 pts up. 85% is probably 
near production-ready. If we wanted to set 85% as our production threshold, 
well, then we’ve reduced our potential private model hosting from $2,000 to 
$700. Not bad!
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Llama 2 Model Instance Needed Approximate Cost ($) 
for 100 hrs

7B ml.g5.2xlarge, 24GB VRAM ~$150.00

13B ml.g5.12xlarge, 96GB VRAM ~$700.00

70B ml.g5.48xlarge, 192GB VRAM ~$2,000.00



Let’s try a different approach. So far, all we’ve done is zero-shot classification. We 
can improve on that by using few-shot learning - that is, we include examples in 
the prompt itself, before presenting the actual task. This way, the model sees an 
example of what is expected of it, and uses that to improve its task-specific 
accuracy.

Using few-shot learning instead of asking for more details, we modified our 
prompts again (these updated prompts with few-shot learning are PT-LS01 to 03):

Much better! 7B is now at 80%, which is decent, and 13B is now at 96%, which is 
excellent and prod-ready. Prompt engineering for the win! We’re still at $700 for 
our potential hosting cost, but we’ve drastically improved the accuracy of what 
we’re paying for (from 85% to >96%)
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7B is also inching up there, but not quite production-ready. You’ll also notice that 
70B, who so far has always been at  100%, has now regressed to 70%. That’s not 
a mistake. That’s the reality of prompt engineering - effective prompt engineering 
for one model may not necessarily translate as well to another. In this case, we 
found a way to prompt the 7B and 13B variants that make them more effective at 
sentiment analysis, but degrades 70B performance.

Since both few-shot learning and asking for details resulted in performance 
improvements, why don’t we do both?

We applied few-shot learning into the sentiment analysis prompts along with 
asking for more details (these updated prompts with few-shot learning and 
detailed responses are PT-LL01 to 03) and benchmarked them again:

67



Prompt engineering for the win! 

13b is 100% and 7b is 90%. Both are probably production ready now, depending 
on your threshold. If 90% is acceptable, then you’ve just slashed your potential 
bill from $2,000 to $150. Or, if you really want to be as close to 100% as 
possible, then 13B is now as good as it gets, similar to 70B from before (our two 
zero-shot prompts) for far less money ($700 rather than $2,000).

70B is still showing a regression from before we tried few-shot learning. It looks 
like it really doesn’t like our implementation of few-shot learning. But in the end, 
it doesn’t matter because prompt engineering gave us what we wanted - a 
cheaper way to host our private models. Assuming 90% is good enough for 
production threshold, our private model hosting cost is now down to a mere 
$150, instead of the $700 or $2000 we would have needed otherwise.

(There’s a further way to save on costs using quantization, which we’ll discuss in 
more detail in Chapter 7.)

Insights on smaller foundation models from other use cases
Remember that we also curated some test prompts for the following scenarios?

➔ Article title suggestions for blog posts

➔ Article summarizer to boil down articles into key points

➔ Cloud assistant chatbot

Let’s see how our different Llama 2 models performed in these tasks.
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In this test, the test prompt (the test prompt here is LS01 from DataV2/Business) 
was ran 20 times for each model, and we reviewed title suggestions manually 
(real human review) to see the variation and consistency. We applied a few loose 
rules to mark an output as wrong:

➔ If the title misses the point of the article snippet

➔ If the title isn’t grammatically correct

➔ If the title is outright harmful (think of this as a superset of the first two 
guidelines, as a catch-all in case suggested titles end up containing 
inappropriate or hateful elements)
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Our foundation models performed really well, considering they’re all zero-shot. In 
a creative use case like this one, a threshold of 80% can be good enough to be 
used as an internal tool for our marketing experts. They wouldn’t be expected to 
use suggested titles as-is, but merely to help them brainstorm different potential 
titles.

Things aren’t so rosy for our article-to-key-points use case. As before, we ran the 
test prompt 20 times for each model (the test prompt here is LS02) and used 
human evaluation again to score the responses. The test article is an old blog 
post written by JV, so that it’s easier for us to score. A response that contains any 
number of key points that is wrong will be marked as wrong (i.e., no 
hallucinations allowed).
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The foundation models struggled here. They often hallucinated key points that 
don’t exist in the provided snippet at all. For example - they commonly included a 
“sweet spot of 4 threads” as a key point, but that’s neither in the snippet nor in the 
full article at all. Sometimes they also hallucinated key points similar to “the 
author asked for readers to submit questions/share own experiences in the 
comments”, which again was not present at all in the snippet.

This is bad, but it’s easy to understand why these hallucinations happened. Blog 
posts often come with the exhortation to submit feedback and share their thoughts 
in the comments, so LLMs encounter tons of these in their training data. And when 
it comes to multithreading (which was the article topic), it has historically been the 
case that ~4 threads is often a common multithreading sweet spot (e.g., testing 
multi-core benefits in gaming), and even if not 4 exactly, there is almost always a 
discussion of diminishing returns and sweet spots in articles that talk about 
multithreading, hence these LLMs no doubt encountered tons of these as well 
during their training.

In this case, it seems unlikely we’d want to deploy this use case to our 
employees. It might cause more confusion or misunderstanding, which is the 
exact opposite of our goal for this particular use case (we want to help people 
learn faster, not add more potential confusion). And that’s alright. The whole point 
of having benchmarks is to help us decide on a deployment, and it worked. Now 
we know we shouldn’t deploy this - at least, not until we are able to apply 
something (e.g., better prompt engineering) to make reliability better.
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Well, this is certainly interesting! That’s not a typo in the chart. 7B did get the 
highest, and 70B performed the worst.

In this test, we prepared two cloud questions, asking the LLM to suggest an AWS 
service given the scenario. The first prompt is the easier one, and the expected 
answer is EC2 (SS01). The second one is Athena (SS02).

Running each prompt 20 times for each model, the mistakes here are pretty 
consistent:
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➔ Only 13B made a couple of mistakes for question one. Instead of EC2, in a 
couple of rounds it would suggest VPC. That’s not an acceptable answer (no 
human Sol Arch would give that answer in the real world, for example), but it’s 
understandable why that mistake sometimes happens - in a Cloud migration, 
EC2 and VPC always go hand-in-hand.

➔ For the Athena question, all the models made the same mistake (with varying 
frequency). They would sometimes answer AWS Glue in some rounds. Again, 
this isn’t really acceptable (no human Sol Arch would say “Glue” when asked 
directly how to query data in S3), but also an understandable mistake. Glue is 
heavily related to Athena in this use case. 

In this case, the errors we encountered aren’t hallucinations that are so far 
removed from what we’re asking. We might decide that this can be deployed 
internally already. The fact that the smallest and cheapest model, 7B, is ahead 
makes it even better for us.
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How much does generative AI cost?

A critical part of planning for any generative AI implementation in the enterprise 
space is cost. You can't just hand-wave away the cost by saying "It'll be worth it!" 
if you can't show the numbers. (Just ask your CFO!)

An important factor there is being able to quickly estimate how much a proposed 
generative AI rollout will add to your operational costs, so that you can then 
compare that against the potential returns and convince your CFO (or maybe a 
customer) to go ahead with the generative AI project rollout.

With the wide array of platforms and models available, exploring potential 
deployment options and resulting cost is often a manual spreadsheet affair. I 
know, in 2023?! That can't be right.

Here's one small step towards fixing that: Gen AI Cost Estimator Project 

You don’t need to set up anything to run it. Just clone or download the repo, and 
open the index.html file in your favorite browser. It’ll just work.

There's also a live version you can check out, hosted in an S3 static website, so 
you can just use the cost estimator without bothering with GitHub.

Choose from the different platforms and models, see the estimated cost based on 
a sample scenario, and even key-in custom settings based on your own workload 
projections to see how much such an implementation will cost across a variety of 
different models and platforms.
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Sample sentiment analysis costing
Let’s revisit our sentiment analysis prompt and make some sample scenarios to 
help you get in the groove for generative AI costing.

Let’s see what our costs would be if we used the zero-shot, straight classification 
prompt (SS01-03 files in DataV2/Sentiment Analysis). Using the Custom Scenario 
tab in our cost estimator, let’s fill in the required values:

➔ Transactions/hr: Let’s try 1,000 transactions every hour.

➔ Avg Input Tokens: Our SS01-SS03 prompts have an average of 100 words. 1 
token is about 0.75 word, so that’d be around 133.33 tokens average. Let’s 
round that up to 150.

➔ Avg Output Tokens: Our benchmarking experiment yielded an average of 36 
output tokens. Let’s round that up to 50.

➔ Hrs/day: Let’s assume our system only operates 12 hrs / day

➔ Days: Let’s compute the cost for 30 days.

With those values, let’s see what the costs would be with some of the different 
platforms and models available:
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(Note: Computations are based on published prices as of mid-November 2023)

The Gen AI Cost Estimator outputs the values above for the chosen models. As 
you can see, there’s quite a spread there. The cost estimator helps you see this 
huge variance in cost so you can decide on what platforms and models to explore 
for different use cases.

Now, that’s just for our zero-shot, straight classification prompt, which minimizes 
our input and output tokens. But as you’d recall, these prompts weren’t the best 
performing prompts. After some prompt engineering, we came up with the 
few-shot learning + detailed sentiment analysis response prompt (LL01-03 in 
DataV2/Sentiment Analysis). Let’s update the token values in Custom Scenario to 
fit this type of prompt,
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➔ Avg Input Tokens: These prompts contain an average of > 700 words, giving 
us an estimated 1,000 input tokens on average.

➔ Avg Output Tokens: Our benchmarking experiment yielded an average of 147 
output tokens. Let’s round that up to 150.

Whoa, that’s quite a jump! Because our token counts skyrocketed for the input 
(due to few-shot learning) and also significantly increased for the output (due to 
asking for more details), our costs jumped significantly. (The only exception is 
Oracle Cloud - that’s because they charge per transaction. Since our transactions 
remained constant, costs didn’t really move. That’s amazing, but unfortunately 
that sort of pricing scheme is an outlier and currently only offered by Oracle.)
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Platform Model Monthly (12hrs/day,  30 days)

OpenAI GPT-3.5 Turbo 16K $90.00

OpenAI GPT-4 8K $2,700.00

Amazon Bedrock Cohere Command $117.00

Amazon Bedrock Claude Instant $187.20

Amazon Bedrock Claude 2 $1,183.32

Oracle Cloud Cohere Command $90.00

Platform Model Monthly (12hrs/day,  30 days)

OpenAI GPT-3.5 Turbo 16K $468.00

OpenAI GPT-4 8K $14,040.00

Amazon Bedrock Cohere Command $648.0

Amazon Bedrock Claude Instant $884.34

Amazon Bedrock Claude 2 $5,731.92

Oracle Cloud Cohere Command $90.00
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Previously, when we prompt engineered our sentiment analysis capability using 
the Llama 2 models, we were only concerned with instance-hr pricing. Without 
caring about the amount of tokens, few-shot learning seemed like a fantastic 
deal, allowing us to reduce our hosting cost.

Now, in the per-token-billing world, we have to think about costs differently. The 
platform vendor takes care of managing the infrastructure, so that’s less 
management overhead for us. But now every token counts, which can and should 
influence our prompt engineering and deployment approach.

When does it start making sense to use a dedicated instance vs 
per-token billing?
Here’s a table with some Hugging Face and SageMaker endpoint costing:
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Based on the Llama 2 models we explored so far, here’s what this table tells us:

➔ If we wanted to deploy Llama 2 7B, we only need the 24GB VRAM (GPU 
memory) instances in either Hugging Face or SageMaker. That’s 
approximately $500.00 for our expected usage.

➔ If we need to deploy Llama 2 13B, we would need either the 80GB instance 
from Hugging Face or the 96GB instance from SageMaker. That’s 
approximately $2,500.00, so that’s quite a jump

➔ The full Llama 2 70B model will need either the 160GB or 192GB instances, 
and that costs either $4,700.00 for the slightly smaller Hugging Face 
instance, or $7,000.00 for the slightly bigger SageMaker instance. Either way, 
we’re in very expensive territory!

Let’s combine this instance-hr cost table with our previous few-shot learning 
per-token cost table, and sort them by cost.
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Platform (VRAM) Price/hr Monthly (12hrs/day,  30 days)

Hugging Face (24GB) $1.30/hr $468.00

Hugging Face (80GB) $6.50/hr $2,340.00

Hugging Face (160GB) $13.00/hr $4,680.00

SageMaker (24GB) $1.52/hr $547.20

SageMaker (96GB) $7.09/hr $2,552.40

SageMaker (192GB) $20.36/hr $7,329.60

Pricing Note: 
These hosting costs are based on published prices as of mid-November 2023. 
For SageMaker, Ohio region [us-east-2] pricing table was used.
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From the table on the left, we can see how costs shake out given our sentiment 
analysis scenario:

➔ Deploying a Llama 2 7B inference endpoint in either Hugging Face or 
SageMaker is one of our cheapest options.

➔ GPT -4 is incredibly expensive. With this amount of money, we could already 
maintain a small cluster of Llama 2 7B or 13B for load-balancing and 
high-availability, and still save several thousand dollars per month.

➔ Oracle Cloud, courtesy of per-transaction costing, is ahead on cost-efficiency 
by a big margin. We only get one model for now, though, so if Cohere 
Command does not fit our use case, it wouldn’t be a viable option.

➔ Bedrock offers us some reasonable options with varying levels of cost.

Remember, that table shows results for our particular scenario. The argument for 
or against going with hosting your own model will swing wildly as you change the 
parameters of your scenario.

Given more tokens used, hosting your own LLM might appear more attractive.

Increasing operational hours per day but keeping total daily tokens the same 
(having the total transactions spread out over a 24-hr period instead of 12), 
per-token billing will appear more attractive.

Let’s try to put that table into a graph to really see the impact of platform and 
model choice in LLM deployments:
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Platform Model Monthly (12hrs/day,  30 days)

Oracle Cloud Cohere Command $90.00

OpenAI GPT-3.5 Turbo 16K $468.00

Hugging Face (24GB) Llama 2 7B $468.00

SageMaker (24GB) Llama 2 7B $547.20

Amazon Bedrock Cohere Command $648.0

Amazon Bedrock Claude Instant $884.34

Hugging Face (80GB) Llama 2 13B $2,340.00

SageMaker (96GB) Llama 2 13B $2,552.40

Hugging Face (160B) Llama 2 70B $4,680.00

Amazon Bedrock Claude 2 $5,731.92

SageMaker (192GB) Llama 2 70B $7,329.60

OpenAI GPT-4 8K $14,040.00
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This is the exact same data as in the table, but it’s far more 
impactful when seen as a graph. Platform and model choice 
matters a lot!

We’ll revisit generative AI costing again in Chapter 7. Right now, 
let the costing takeaways be:

➔ Per-token vs per-instance-hr billing results in vastly 
different economics.

➔ Benchmark and model your scenario.

➔ Use an estimator like the Generative AI Cost Estimator 
project to help you quantify your costs .

➔ Consider running models locally during development and 
experimentation, whenever feasible.
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Reproducible Performance Metrics for LLM inference
AI infrastructure provider AnyScale talks about LLM inference performance. This is more about the performance 
of the infrastructure rather than the LLMs themselves, and they provide an open source project to make these 
performance metrics reproducible by all.

How to Run a ChatGPT Alternative on Your Local PC
Explores the intricacies of deploying Oobabooga Text generation web UI on personal computers. The article 
covers GPU memory requirements, compares performance across various hardware, and provides practical insights 
into local implementation.

INTERESTING READS AND RESOURCES

LLM Economics – A Guide to Generative AI Implementation Cost
From AIM Research, interesting case studies and consultations with some industry experts  about the theoretical 
and practical realities of generative AI costing.
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LLM Large Language Model Cost Analysis
Data and AI company La Javaness shares their costing approach for developing LLM applications, comparing API 
access-based  solutions vs on-prem / self-hosted solutions.
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https://analyticsindiamag.com/llm-economics-a-guide-to-generative-ai-implementation-cost/
https://lajavaness.medium.com/llm-large-language-model-cost-analysis-d5022bb43e9e


CHAPTER 6: 
RETRIEVAL AUGMENTED 

GENERATION
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We’ve seen fantastic capabilities that generative AI can give our own 
applications.

What you’ve no doubt also noticed is that, for most real-world enterprise use 
cases, just having a working LLM that you like is only half the battle. 

To make something of actual business value, we need prompts that integrate 
actual business data to it. For example, our marketing description generator 
needs to be fed details of the product it will work on, and in the proper structure 
as prompt-engineered. And our sentiment analysis use case needs to be fed the 
human feedback data it will analyze, be it customer complaints, product reviews, 
employee feedback, etc.

And what if you wanted to create a self-service employee portal where they can 
ask HR about company policies, but you want that to be a chatbot, powered by 
generative AI, with knowledge of your specific company policies? Clearly, that’ll 
mean that our LLM must have access to our company policy docs.

All these instances where generative AI needs to be grounded in specific 
information calls for a technique called Retrieval Augmented Generation (RAG).

Why RAG?

RAG allows us to create amazing generative AI capabilities by combining our 
existing systems with LLMs. Specifically, our existing systems can become the 
source of our use-case-specific information. We query them during prompt
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creation to retrieve relevant information, and the retrieved information becomes 
part of the prompt that we send to our LLM.

In other words, our prompt ends up being augmented with retrieved information, 
and our LLM ends up generating better, more appropriate output because of it.

That’s RAG, in a nutshell.

In certain cases like sentiment analysis, it will obviously not work at all as we 
expect unless our sentiment analysis feature has access to the customer or 
employee feedback we aim to analyze. If you wanted an LLM, for example, to go 
through all 1,000 customer feedback this month and give you a summary of the 
overall sentiment and the top 5 concerns to help you improve your service, well, 
there needs to be an information retrieval component there.

RAG is also used to help address hallucinations in generative AI. A hallucination 
is when an LLM provides a factually wrong response, often still presented 
authoritatively. LLMs can be wrong, after all (see the benchmarks we presented in 
the previous chapter). RAG can help address hallucinations by feeding the LLM 
valuable information to ground it on.

Aside from addressing hallucinations, RAG can also be especially useful for giving 
LLMs up-to-date information. LLMs are trained on trillions of tokens, which takes 
a huge amount of time and money. They can’t be updated every day. This means 
their knowledge of the world has a cutoff date.

If you wanted to ask an LLM about something beyond their cutoff date, it will 
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likely give you outdated information. For example, if best practices in your field 
have evolved in the last year, beyond the training cutoff date of the LLM you are 
using, then it wouldn’t be able to effectively assist you. However, with RAG, 
relevant docs about new and updated best practices can be fed to the LLM, which 
will enable the LLM to assist you and properly respond using the updated best 
practices in your field.

Let’s look into some different use cases and see RAG in action.

Prompt enrichment through database queries

The most basic RAG use case is simply querying relevant databases in your 
environment in order to enrich a prompt. 

Marketing description generator
A great example of this is our marketing description generator use case. For that 
to actually work as expected, we need to query an external database (i.e., 
external to the LLM), and then add that retrieved information into our prompt. 

Here’s a simplified architecture diagram of the RAG process involved here:
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In the diagram above, the Application is whatever system we are creating a 
generative AI feature for. For example, that might be our Online Store system. 
The Generative AI Service is whatever endpoint hosts our desired LLM (be it a 
private model or a public model). The Product Database is whatever database 
has the information we need. 

Looking at that diagram from the perspective of our marketing description 
generator, our prompt creation code (which lives in Application) will query the 
Product Database for the details of the products it will create a marketing 
description for. The Application will then assemble the prompt containing
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relevant product data, and then send that prompt to the Generative AI Service. 
The Generative AI Service will process the request and then send back a 
response - the created marketing description. The Application can then save that 
response for use in the online store, or marketing brochures, or whatever.

Our marketing description generator sample codes (across all platforms: OpenAI, 
Hugging Face, and Sagemaker) share this common code during prompt creation:

(You can find all sample codes in the BRIGADE companion repo.)

In a real implementation, the information in product_details is supplied using 
RAG. Instead of hard-coding them like we did in our sample code (which simply 
demonstrates LLM capability), this is where we should be querying any of our 
databases for the necessary information. To continue our example scenario, we’d 
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be querying the Product Database here to get the product details and then 
concatenate and arrange them as needed into product_details.

Sentiment analysis
Our sentiment analysis use case is very similar:

Above shows a simplified architecture diagram for a sample implementation of an 
LLM-powered sentiment analysis capability. Our Application will use generative 
AI to automate sentiment analysis on a mass scale. It will query the Customer 
Reviews database to fetch product reviews left by our customers.

80

https://github.com/debbiebastes/BRIGADE


The Application will then assemble a prompt containing the first customer 
review, and then send that prompt to the Generative AI Service. The Generative 
AI Service will process the request and then send back a response - the 
sentiment analysis for that particular review. The Application will then save that 
response somewhere (which could also be the Customer Reviews database) and 
then move on to the next customer review until all customer reviews have been 
analyzed.

In all of our sentiment analysis sample codes, a commonality they all share is the 
prompt creation code:

(You can find all sample codes in the BRIGADE companion repo.)
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Product_name and review_text are the variables in this prompt that need to be 
supplied using RAG. Instead of hard-coding them like we did in our previous 
sample code (just to demonstrates LLM capability), this is where we should be 
querying any of our databases for the necessary information. To continue our 
example scenario, we’d be querying the Customer Reviews database here to get 
both the product name and the review text.

Enterprise search

When all we need is to query specific information, and we know exactly what 
records to pull, RAG through database queries is easy and straightforward.

Sometimes, however, our use cases can be more complex. In the case of a 
chatbot meant to help our employees get answers to company policy questions, it 
wouldn’t be a straightforward “receive a question, query a database, create 
prompt by combining query result and question” operation.

For example, how is your application (the backend of the chatbot) supposed to 
know what to query when it receives the following questions about company 
policy:

➔ “I’m thinking of taking an extended leave, am I already qualified to do so?”

➔ “If I work overtime on a holiday, can I then offset those hours some other day 
during the next month?”
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These questions generally require two kinds of information:

1. The employee’s personal information kept by HR, such as hiring date, status, 
position/role, department, etc.

2. Relevant company policy

The first can be a straightforward database query. For example, behind the 
scenes, using the chatbot makes the application query the HR database for the 
user’s relevant employment information. Different departments, positions or 
tenure may have slightly different policies, so this is necessary. (For example, a 
new, probationary employee will not have certain benefits, and a contractual 
employee may have limited benefits compared to full-time employees)

The second type of information, relevant company policy, is more difficult. Based 
on just the text of the question alone, it’s difficult to determine how to make such 
a query - if that’s at all possible. Unlike employment information, company 
policies might not exist at all in a typical database system, and instead as a 
collection of curated documents.

This is where enterprise search comes into play.

On the left is a simplified architecture diagram from the AWS Machine Learning 
Blog that shows an example of RAG through enterprise search.

(Image from AWS Machine Learning Blog: Quickly build high-accuracy Generative 
AI applications on enterprise data…)
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From the original blog post, here’s what’s happening above:
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1. The user makes a request to the GenAI app.
2. The app issues a search query to the Amazon Kendra index based on the user request.
3. The index returns search results with excerpts of relevant documents from the ingested 

enterprise data.
4. The app sends the user request and along with the data retrieved from the index as 

context in the LLM prompt.
5. The LLM returns a succinct response to the user request based on the retrieved data.
6. The response from the LLM is sent back to the user.

https://aws.amazon.com/blogs/machine-learning/quickly-build-high-accuracy-generative-ai-applications-on-enterprise-data-using-amazon-kendra-langchain-and-large-language-models/
https://aws.amazon.com/blogs/machine-learning/quickly-build-high-accuracy-generative-ai-applications-on-enterprise-data-using-amazon-kendra-langchain-and-large-language-models/


In this architecture, Amazon Kendra provides the search intelligence needed 
that a straightforward database query cannot.

With properly indexed company documents containing relevant policies - for 
example, from accounting, payroll or HR - Kendra can retrieve relevant excerpts 
from all of these different company documents to provide needed context for the 
LLM.

Kendra itself won’t be answering the employee’s questions. Kendra only serves 
as the retrieval component in our RAG setup here. We want Kendra to fetch 
excerpts from our company docs that are relevant to the question being asked, so 
we can then take those excerpts and create a prompt that contains both the 
original question and the relevant excerpts, send that to the LLM, and the LLM 
can respond with an answer based on our own company policies:
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The right half of the diagram is essentially the same as our database-query-
enriched prompts in our marketing description generator and sentiment analysis 
use cases. 

The left half is our enterprise search component (e.g., Kendra, OpenSearch, 
Elasticsearch, etc). 

Our Application queries the Employee Database for basic information about the 
user that affects company policies (hiring date, status, position/role, etc). The 
Application also retrieves information through Enterprise Search, receiving 
excerpts from company policies relevant to the question. 

The Application then combines all of these retrieved information from both the 
Employee Database and Enterprise Search, along with the original question, 
into a prompt and sends that to the Generative AI Service. 

The Generative AI Service will send back its response, which the Application 
receives and, in our chatbot use case, can then be displayed back to the user 
(after some optional preprocessing).

83



RAG using logs and source code repositories

RAG isn’t limited to databases or enterprise search. Anything that stores useful 
information that you can retrieve from is fair game.

Let’s look at how we can apply RAG to create generative AI features that can help 
IT service providers.

Log review with generative AI
In production, warnings or alerts are often sent to a sysadmin team based on log 
events, in an automated fashion. A log scanner software or service finds an error 
in a log message during a routine scan (or, in an event-driven setup, an error 
triggers the log scanner service), gets relevant information, and passes all that off 
into an email alert so that the sysadmin team gets notified.

We can insert generative AI in this pipeline to make the alerts more useful.

In the diagram on the right, we still have the Application and the Generative AI 
Service as in all our previous RAG architectures. This time, the RAG retrieval 
component is Logs Source - most likely a centralized log service that contains the 
unified logs of all our infrastructure and applications.  In a production setting, 
there’s usually a Log Scanner software whose job is to review logs and do 
something whenever something of interest is seen (warnings, errors, anything 
outside of normal). We’ll combine that with our Generative AI Application so 
that when the Log Scanner finds something of interest, the next step in that 
process is for the Generative AI Application  to enrich the notification with an 
explanation of the problem, as well as potential ways to handle it. 
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To make this work, our Generative AI Application gets relevant logs from Logs 
Source (perhaps as passed by the Log Scanner software or service itself), creates 
a prompt that uses the log information, sends the prompt to the Generative AI 
Service, and the response (containing problem explanation with potential 
solutions or tips) is stored by the Generative AI Application into a data store of 
some sort (which could be a database or object storage). External Systems (for 
example, those systems in charge of creating and sending alerts) can then use that 
generative AI response to enrich the alert.

Now, your admins receive an alert that contains useful problem explanation and 
tips, thanks to generative AI input.
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In code, the prompt for that would look something like this: 

This code should look very familiar. It ends with our usual call_ai function, 
prompt is created by combining the static parts of the prompt (our instructions), 
with the RAG retrieval portion (log_streams, which came from payload).

The choice of endpoint and model can be a big factor here. Having generative AI 
in the middle of your notification process can add significant latency, and if that’s 
a factor (e.g., you want everything as close to real-time as possible), you should 
benchmark your chosen endpoint and model in a sandbox to tease out 
performance characteristics and find an acceptable model in terms of latency and 
helpfulness.
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Source code problem review with generative AI
If generative AI can help explain problems through reviewing logs, why not also 
have it review relevant source code?

In this next scenario, imagine that the error that triggers an alert involves an error 
in the source code.

Without access to the source code, our generative AI assistant will only be able to 
provide limited help, something like “There seems to be an error in line xxx of the 
code, you should review the source code and fix it”. Thanks, Captain Obvious!

Well then, let’s also send it source code:

85



That diagram is a slightly modified architecture diagram of our log review use 
case, now with Code Repository added. 

As before, when Log Scanner finds something of interest, our Generative AI 
Application gets sent the relevant logs in order to enrich the resulting alert with 
some helpful information. 

What’s new is that our Generative AI Application will now retrieve source code 
from the Code Repository if the logs indicate that a code error is the cause of the 
problem (e.g., if the logs show that one of your applications is emitting Python 
errors). 

Your Generative AI Application must be programmed with some proprietary 
knowledge of your running applications to know how code for that application can 
be pulled - for example, by giving your Generative AI Application read access to 
your production Git repo, or in case of services like Lambda, permission and 
ability to download Lambda source code directly. 

Combining both the relevant logs and relevant source code, Generative AI 
Application can now create a prompt that can specifically ask for code 
recommendations to fix the problem.
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In code, it would look something like this:

This is pretty much the same as our earlier function, with the exception of also 
expecting source code.

Now, when our developers ultimately receive a ticket from our sysadmin team, 
not only will it contain some explanation of the problem, it will also contain some 
recommendations on how to fix the code.

As before, if latency is an issue, you will have to be mindful about your choice of 
endpoint and model. Make a performance benchmark of your different options to 
help guide your choice.
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Vector databases

When you have a large body of knowledge that consists mostly of unstructured 
documents (not databases you can directly query - for example, documents), the 
main problem is: “In question XYZ, what pieces of texts in my sea of curated 
documents are most related and appropriate?”

We can’t do RAG, after all, if our application can’t figure out what to retrieve in the 
first place. 

Traditional enterprise search can be limited when finding the right documents 
and excerpts rely on semantic distance or how closely-related a particular word 
is to another. In other words when you need to rely more on meaning and context 
rather than just keywords.

These cases are where we need to rely on technology that is similar to how LLMs 
think: not in terms of words, but in vector embeddings. Vectors are a 
mathematical representation of words where related terms are closer to each 
other in the vector space. Imagine that each vector is a multidimensional array 
containing numbers, and you have hundreds of dimensions in that array. If you 
think of those numbers as coordinates, then terms that are related to each other 
have values that put them closer to each other than unrelated terms.

With information transformed to that kind of embedding, we can then take a user 
question, transform it into vectors using an embedding model, and then find 
related information in our database that stores information also as vectors using 
the same embedding model. We then use the original text of the related 
information we found, and it to our prompt.
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Such a database is called a vector database. Stand-alone vector databases 
include Pinecone and Weaviate.

Vector support has also been added to traditionally non-vector-database 
products. For example, PostgreSQL has the pgvector extension to work with 
vector search, and Amazon OpenSearch has the vector search collection type.

If you already use a traditional database with vector support (Oracle, Postgres, 
and Microsoft SQL Server all do), or already use a service like OpenSearch which 
also provides support for vector search, that’s the best way to get started. It’s 
almost always a bigger lift to start with a new, stand-alone product, rather than 
just consuming a new feature of a service you already use.

Stand-alone vector databases might be a good idea if you find that the 
performance and scalability you desire isn’t available in your current setup.
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A generic architecture diagram for RAG using a vector database would look 
something like this:

That diagram shows a vector-search-powered RAG using a vector database for 
our previous use case of a chatbot meant to help our employees get answers to 
their company policy questions. It looks almost exactly like the enterprise search 
architecture diagram, just with the enterprise search tool replaced by a vector 
database.

A critical difference is the part that is vector-database specific: transforming our 
data into vectors. Our vector database will store both the plaintext and vectorized 
forms of our data, so these vectors must be created using our chosen embedding 
model. The embedding model determines how a particular word is transformed 
into a vector, including the number of dimensions.
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Maintaining a vector database is an entirely new discipline in itself, especially for 
fast-changing data. You should create an automated pipeline in your environment 
(Cloud or otherwise) to manage the freshness of the records in your vector 
database. RAG will end up giving terrible results if the actual knowledge base has 
been updated significantly, but your vector database still has the old version 
because someone in the team forgot to update it.

RAG examples and demos
Weaviate provides a couple good examples of RAG through vector search in 
action: 

➔ https://github.com/weaviate-tutorials/DEMO-text-search-plants
In this demo app, users can find plants using natural language queries, and 
pull up detailed information.

➔ https://github.com/weaviate/Verba
Verba is a tool you can use locally or in the Cloud to use your personal 
documents as a source of truth for your questions, to “chat with your 
documents.” Verba is the kind of implementation you’d want for that 
self-service employee portal where they can ask random questions about 
company policies and have it answered by an LLM-powered chatbot that 
“understands” your documents.

Pinecone has an interactive Python notebook that demonstrates RAG: 
https://colab.research.google.com/github/pinecone-io/examples/blob/master/d
ocs/langchain-retrieval-augmentation.ipynb
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Vector Search with OpenAI Embeddings: Lucene Is All You Need
This paper presents an argument against immediately assuming you “need” a vector database for your LLM 
deployments.

INTERESTING READS AND RESOURCES

Everything About Vector Databases…  and Top Vector Databases for LLMs
A short and simple article about vector databases, with a collection of five of their chosen vector databases. You 
can use this list as a jumping off point for more vector database exploration.
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RA-DIT: Retrieval-Augmented Dual Instruction Tuning
Philipp Schmid of Hugging Face shares his insights on a new paper from Meta detailing a novel approach to 
reduce LLM hallucinations in RAG scenarios. Original paper is also linked.

RAG is Just Fancier Prompt Engineering
An interesting take on RAG. Also links to other interesting papers about RAG, including comparing a RAG setup vs 
using a long context window model provided with the full context instead of retrieval.

https://arxiv.org/abs/2308.14963
https://www.marktechpost.com/2023/07/04/everything-about-vector-databases-their-significance-vector-embeddings-and-top-vector-databases-for-large-language-models-llms/
https://www.linkedin.com/posts/philipp-schmid-a6a2bb196_how-can-we-reduce-hallucinations-and-force-activity-7129035435799928832-rd5N/?utm_source=share&utm_medium=member_ios
https://analyticsindiamag.com/rag-is-just-fancier-prompt-engineering/


CHAPTER 7: 
SPECIALIZED SMALLER 

PRIVATE MODELS
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Deploying any single LLM is easy. Making a proof of concept (POC) for a single use 
case on it is also easy.

When it’s just your team creating, testing, and demonstrating use cases on the 
POC, the economics of the LLM barely matter. Your team probably won’t even 
break a few million tokens of usage. Even 20M tokens in a month is going to be 
barely a blip in your operations bill for almost any model you could be using.

The problem is scale. 

At scale, when your POC now needs to handle huge amounts of volume, the 
economics begin to matter.
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Revisiting the cost of LLMs

Recall our first foray into LLM costing in Chapter 5. (See the graph on the left)

That’s quite a huge spread there. Recall that we were modeling this scenario:

❏ Transactions/hr: 1,000
❏ Avg Input Tokens: 1,000 
❏ Avg Output Tokens: 150
❏ Hrs/day: 12 
❏ Days:30 

The orange bars show the cost of hosting an LLM yourself (instance-hr pricing), 
versus the cost of paying per token, shown in green bars (Bedrock, OpenAI).

If we make the operating hours longer (from 12 to 24 hrs per day), hosting 
becomes relatively more expensive compared to per-token billing. Conversely, if 
we increase transactions or token amounts, hosting generally becomes relatively 
less expensive compared to per-token billing. When per-token costs start 
becoming 2-3x more expensive than the cost of hosting a private model, then 
suddenly it becomes far more attractive to maintain your own endpoints.

These hosting costs are actually a worst case. We can host Llama 2 13B on a 
24GB machine, or host Llama 2 70B on an 80GB or 96GB machine. In fact, we 
really should. But before they can run smaller machines than we initially 
estimated them for, the models need to be slimmed down and made smaller. 

This process of making models smaller is called quantization.
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Quantization

Quantization is a mathematical process of mapping a bigger set of values to a 
smaller set of values. 

In LLMs, this is helpful because this allows us to represent what would be 32-bit 
or 16-bit floating point values (the weights of the LLM parameters) into just an 
8-bit format or even smaller.

Quantization has two major benefits - it’s cheaper to run them (we only need 
smaller instances with less GPU memory), and they inference faster (which 
improves the user experience by reducing latency).

Let’s take Llama 2 13B. It has 13 billion parameters. Those parameters are 
mostly 16-bit floating point values (f16). Space-wise, that means 13 billion x 2 
bytes (16 bits / 8 bits per byte) = 26 billion bytes, or 26GB. If you downloaded 
Llama 2 13B, you’ll see that the model does take up 26GB of disk space - loading 
that into memory therefore also needs 26GB of RAM.

If we use quantization to make this smaller, say q4 (4-bit quantization), then we’d 
be slicing our storage (and RAM) needs by 4 (from 16-bit values to 4-bit values), 
so we’d lower storage and memory needs significantly:

If you did this yourself in Chapter 5 during the llama.cpp section, you’d have 
found we’re off a little: ~7.9GB is the actual size of Llama 2 13B with the q4_K 
quantization. That’s still 3.3x smaller than the original!
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We could easily fit 3 of this Llama 13B q4_K model into the smallest Hugging 
Face or SageMaker instance. Not necessarily that we’d want to - that’s just to 
show how much capacity there is here, and the amount of volume you can expect 
such a server can now handle, given the slimmed down 13B model. 

Best of all, we’ve just reduced our 13B hosting cost from ~$2,500 to just ~$500!

If we apply the same treatment for Llama 2 70B, we go from ~140GB of space, to 
just under 45GB! From the table above, that means our hosting costs dropped 
from $5.7-7.5K USD, to just ~$2.5K USD (cutting costs by more than half!)

With quantization, we can revise the cost graph from earlier:
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       13 billion x 0.5 bytes = ~6.5GB



Suddenly, both Llama 2 7B and 13B make much more sense economically, and 
we’ve lowered the threshold where self-hosting the 70B starts to make sense.

With quantization, private model hosting suddenly starts to make a lot more 
sense for any deployment at scale.

This is one of the most important goals in the generative AI journey as 
recommended in the Generative AI Roadmap we prescribed in Chapter 1: 
specialized smaller private models.

With quantization, private models can be hosted a lot cheaper than their 
full-precision vanilla versions. Further on in this Chapter, we’ll take a look at 
fine-tuning - how to make these foundation models more suited for our specific 
use cases as needed. Together, fine-tuning and quantization make generative AI 
enterprise deployments more scalable, reliable and cost-effective.

Quantization impact on LLM performance

We’re able to make these foundation models much smaller and cheaper to 
operate - but what about the actual performance? If we reduce the precision of 
the weights, wouldn’t that also affect the accuracy and reliability of the LLM? 

Great question! 

In Chapter 5, we talked about LLM_LocalBench, and how we benchmarked the 
different variants of Llama 2 (7B, 13B and 70B) in a few use cases.
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Aside from their native f16 (non-quantized) version, that experiment also 
included a few different quantizations for each model to compare how different 
levels of quantization perform against the non-quantized vanilla version in these 
different use cases.

Let’s look at the sentiment analysis results.

In the first sentiment analysis prompt (you can review all the prompts here:  
DataV2/Sentiment_Analysis), we don’t see a performance degradation with q8,  
q5, or q4 quantizations in the 7B (smallest) model. In fact, f16 showed the worst 
performance. Don’t read that as quantization being better - that just means from 
20-40 samples, the impact of quantization is less than the impact of the inherent 
randomness from LLMs.

https://github.com/jvroig/llm_localbench
https://github.com/debbiebastes/llm_localbench_data/tree/main/Historical/Data%20V2/Sentiment_Analysis


Now with 13B, we can see that there’s also no clear difference in performance 
in this prompt. And the f16 version still isn’t the top performer here.
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This was an easy prompt for the LLM, so let’s look at a harder prompt:

Again, there’s not really a clear quantization performance hit. For 7B, that’s 
because even the full, non-quantized version didn’t really get anything right. For 
13B, it even looks like the smallest, most aggressive quantization (q4_K) 
outperformed the full version. Again, like our first graph, don’t read that to mean 
quantization increases performance (unlikely). There’s a ton of variance in LLM 
responses, and this variance so far is stronger than any performance hit from 
quantization - so, as far as our quantization is concerned, there’s still no real 
performance hit that we can measure. 

If this seems weird, that’s just LLM randomness for 
you. You don’t have to take our word for it though. 

Use LLM_LocalBench with the DataV2 dataset and try 
it out for yourself. Every single piece used in this 

experiment is available at no cost: our repositories for 
the infra and data, the Llama 2 models, and llama.cpp 
for local inference. You’ll see a lot of natural variance 

as you keep running and re-running more rounds.



The last basic prompt, SS03, is another easy one:

Again, we can see that quantization still has no measurable performance hit for 
our use case.

So far we’ve looked at performance in the most basic prompt sample. Now let’s 
look at the best prompt-engineered version of our sentiment analysis use case 
(few-shot learning + detailed response):
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Across all 3 of our best prompt-engineered samples (LL01 to LL03), quantization 
doesn’t seem to be harmful at all.

At least for our sentiment analysis use case, quantization doesn’t seem to hurt! 
We can quantize our models aggressively, down to q4, and expect 
minimal-to-zero performance hit - at least according to our test samples.



We also benchmarked other use cases, but still found no significant difference 
between the full and quantized versions of 7B and 13B:

Across these different use cases and prompts ( from above and on the right), we 
still saw no performance impact from quantizations. This is awesome - we get to 
host these private models a lot easier! And remember, Cloud isn’t your only 
choice. Quantization and the lack of a significant performance hit in our use cases 
means it’d be a lot easier to run private models locally on dev machines too.

Important! Don’t take our testing as a blank check for your own use cases. It 
bears repeating: Always benchmark on your own use cases and data!
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It is completely possible (and highly likely) that for a different use case or a 
different set of data, the models and quantizations will perform differently. 

Two critical takeaways:

➔ Quantization is an essential part enterprise-level generative AI deployment 
for scalable private models

➔ You must perform realistic benchmarks against your LLMs for each of your 
expected use cases, and on the quantized models you wish to deploy.



Fine-tuning

We’ve already gone through a lot of useful tools - technologies and processes -  to 
help make our generative AI projects successful:

➔ Prompt engineering, to get more effective results from our LLMs

➔ Public models, usually the quickest way to get started and prototype with 
generative AI

➔ Private models, to allow us to harness generative AI without sacrificing strict 
regulatory compliance and privacy controls

➔ Foundation models, to enable wide experimentation, matching appropriate 
models to specific use cases, and benefitting from the rapid pace of Open 
Source LLM development.

➔ Retrieval Augmented Generation (RAG), to make our LLMs more useful in a 
business context through feeding it specific or curated data as needed in 
different use cases

➔ Quantization, to reduce LLM size and memory needs, drastically reducing 
LLM self-hosting costs and making local LLM deployments far easier, 
providing a huge boost for private model hosting.

There’s one more tool for our LLM strategy toolbox we need to cover: fine-tuning.

BRIGADE | Chapter 07: Specialized Smaller Private Models

Debbie Bastes | JV Roig Bastes-Roig Insights into Generative AI Development for the Enterprise 97

In Chapters 4 and 5, we learned that foundation models are pre-trained on a 
huge amount of diverse data, and this makes them adaptable for a lot of tasks 
that they haven’t been specifically trained for. You’ve seen this in action our 
foundation model benchmarks data, vanilla and quantized - they can be made to 
perform acceptably well in different use cases.

Fine-tuning is the process of making foundation models perform better in 
specific tasks. If we look at the results data from our LLM_LocalBench 
experiments, we can see that even in the correctly answered items, our 
foundation models aren’t very compliant with any specific formatting.Ffor 
example, when we ask for the sentiment analysis output to be in a particular 
format, the responses may be correct (the sentiment was identified correctly) but 
the formatting is not uniform, especially for the zero-shot prompts. It’s 
significantly better for the few-shot ones, but still not as consistent as it could be.

This is where fine-tuning can come in. With fine-tuning, we provide additional 
nice, clean, sample data that is representative of the specific task we want to 
tune the LLM for. In the case of our sentiment analysis use case, that could be a 
data set containing real product reviews from our customers. We label these 
samples correctly (i.e., also provide the ideal sentiment analysis output for these, 
according to our human experts), and our fine-tuning training set then becomes a 
few dozen review samples coupled with their ideal answers.

Through the fine-tuning process, this new training data set is “added” to our 
LLM’s knowledge, so that the LLM understands better how to handle this specific 
task. 

https://github.com/debbiebastes/llm_localbench_results
https://github.com/debbiebastes/llm_localbench_results


A good case for this is to strictly control the response format of the LLM so that its 
responses can then be easily consumed by connected enterprise systems. In our 
sentiment analysis example, if we could rely that the sentiment analysis 
responses are strictly formatted as a Python dictionary like this:

…then we can immediately take that response and have it consumed by our 
enterprise application since it’s already properly formatted. We don’t need to 
have complex and failure-prone code to take the sometimes-unstructured 
response, parse it, and then transform it to our usable structured format.

Important! It probably won’t work very well if you are trying to fine-tune it with 
additional facts - for example, company policies or your project knowledgebase. 
With only very few samples and a limited amount of tokens in the fine-tuning 
training set, that’d be a drop in the bucket compared to the hundreds of billions or 
couple trillion tokens the foundation model was already trained with. And if it’s not 
good for facts, then it also won’t be a good way to mitigate hallucinations. For 
mitigating hallucinations and making LLMs stick to prescribed facts like your 
company policies or a support spiel, prompt engineering and RAG is the way to go.
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All platforms we’ve encountered so far offer fine-tuning for some of their models. 
Let’s go through the fine-tuning process for two of them: OpenAI and SageMaker 
JumpStart.

Fine-tuning on OpenAI
Now, we’ll go through the steps we did to fine-tune GPT-3.5 for our sentiment 
analysis needs. (For more in-depth information, consult the official OpenAI 
fine-tuning documentation.)

1. Prepare and validate training data
a. Data Collection

i. Collect text data that is representative of the tasks you want the 
model to perform. This could be conversational exchanges, article 
excerpts, or any other relevant text.

ii. Format your data as JSONL (JSON Lines format). Each line in a JSONL 
file represents a separate JSON object.

iii. For each object, include the following fields: system message, input 
(prompt) and output (response). You can find examples based on our 
sentiment analysis use case in the BRIGADE Companion Repo.

iv. Data Cleaning and Preprocessing - Ensure your data is clean, which 
means it should be free of irrelevant content, formatting issues, and 
sensitive information.

b. Validating Your Dataset - You can use this tool from OpenAI to validate 
your dataset before fine-tuning. It provides a comprehensive approach to 
preparing and analyzing your data for fine-tuning a chat model with 
OpenAI, ensuring the data is in the correct format, identifying potential 
issues, and estimating the associated costs. Here’s a sample output when 
you run that validation tool on your training dataset:

{
    "Product Name": "<product name>",
    "Review Sentiment": "Positive|Negative|Neutral", 
    "Positive Comments": [
        "<comment1>”, 
        "<comment2>”, 
    ], 
    "Negative Comments": [
        "<comment3>". 
    ]
}

https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/guides/fine-tuning
https://github.com/debbiebastes/BRIGADE/tree/main/Fine-tuning/OpenAI
https://cookbook.openai.com/examples/chat_finetuning_data_prep
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2. Train a New Fine-tuned Model - Now that you have prepared your data and 
ensured that it follows the required format, the actual training process is 
actually the easy part. Fine-tuning a model using OpenAI's platform can be 
done either through their Fine-Tuning UI or via the API. Here’s a walkthrough 
of the fine-tuning process for both methods:
a. Fine-tuning via the OpenAI fine-tuning UI

i. Go to https://platform.openai.com/finetune and click Create New



ii. Choose your base model.

iii. Upload training and validation data or choose from your existing files. 
Then just click Create and you’re good to go!
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vi. Monitoring and Adjustments: You can easily keep track of the training 
progress using the UI. It only took around 10 mins for our sentiment 
analysis fine-tuning job with 10 examples. 
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b. Fine-tuning via the OpenAI API - The API allows for more detailed control 
over the fine-tuning process, including the ability to adjust a wider range 
of parameters and settings. (see: OpenAI API Reference)

i. Upload the files using the Files API. Maximum individual file size is 512 
MB and should be in .jsonl format.

from openai import OpenAI

from dotenv import load_dotenv , find_dotenv

_ = load_dotenv (find_dotenv ()) # read local .env file

client = OpenAI()

#upload training file

file = client.files.create(

 file=open("./FT_data/senti_training_dataset.jsonl" , "rb"),

 purpose="fine-tune"

)

#upload validation file

validation_file  = client.files.create(

 file=open("./FT_data/senti_validation_dataset.jsonl" , 

"rb"),

 purpose="fine-tune"

)

print(file)

print(validation_file )
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The API returns the uploaded File object. This response includes 
information about the file, such as its ID, which you'll need for 
fine-tuning.

ii. Create a fine-tune request. Send a request to OpenAI to create a new 
fine-tuned model using your data. You are required to specify the base 
model you're fine-tuning and to include your training file ID. The 
validation file is optional, but we included one in our example. The use 
of validation data helps in monitoring the model's performance and 
avoiding overfitting. All the other parameters are kept at default 
values. 

#start fine-tune job

response = client.fine_tuning .jobs.create(

 training_file =file.id,

 validation_file =validation_file .id, 

 model="gpt-3.5-turbo-1106"

)
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The API returns a fine-tuning.job object, which includes details of the 
enqueued job, such as job status and the name of the fine-tuned 
models once complete.

iii. Monitor the training process. Use the code below to check for the 
status of your fine-tuning job. The job-id will be returned by the Create 
fine-tuning job API we used in the previous step. You can also monitor 
the process through the Fine-tuning UI.

 
Fine Tuning status = queued:

Fine Tuning status = succeeded:
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# Retrieve the state of a fine-tune job

print("FT_job status: \n")

print(client.fine_tuning .jobs.retrieve("ftjob-id" ))

And just like that, you now have your 
own fine-tuned GPT-3.5 model!

This isn’t the end, though. 

After testing and benchmarking your 
fine-tuned model, you may need to 
rerun the fine-tuning and adjust 
parameters to improve the model's 
learning and resulting performance.

Fine-tuning is an iterative process.



Fine-tuning through SageMaker JumpStart
Many models available in SageMaker JumpStart allow you to further fine-tune 
them. You can find these models labeled with “Fine-tunable: Yes” in their model 
card.

Llama 2 is one of these available fine-tunable models. Let’s go through the 
process of fine-tuning the small Llama 2 7B Chat model so that it becomes more 
appropriate for our sentiment analysis use case.

1. Prepare data (JSON Lines)
a. In SageMaker JumpStart, you can find the possible data formats for 

training under the Fine-tune the Model on a New Dataset section of the 
model card (that’s usually at the very bottom; see screenshot on the right). 
In the case of Llama 2 7B Chat, we have  three options: chat fine-tuning, 
domain adaptation fine-tuning, and instruction fine-tuning.

b. Our use case is best-served with instruction fine-tuning, so that we can 
teach it to follow a specific format to handle the sentiment analysis 
prompts it will encounter. We’ll prepare data for that type of fine-tuning.

c. Under the Instruction fine-tuning subsection of the Fine-tune section, it 
explains the different ways you can format your data. In our case, we 
prepared the simplest format using the most straightforward template:
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{

    “prompt”: “{question}”,

    “completion”: “{answer}”

}



d. You can find the sample training dataset we used here: 
BRIGADE/Fine-tuning/SageMaker

e. What you’ll see there is that we prepared a minimal training dataset of 13 
question and answer pairs, in JSON Lines format. There is also a 
template.json file there describes our training data format.

f. Make sure there isn’t a newline or empty line at the end of your training 
file. That will cause an error during the training job and cause it to fail.

g. We also didn’t prepare a separate validation dataset. 
There is a known-bug  for SageMaker training with Llama 2 that will cause 
the training job to fail if a validation dataset is explicitly used. Instead, 
we’ll just configure the training job to split the training data into training 
and validation using a split ratio.

h. When you have your training data prepared, create a folder in an S3 
bucket and place your JSON Lines files (there can be more than one) and 
template.json file inside that folder. 

Make sure SageMaker can access that folder. Simply use the default 
bucket created by SageMaker if you want to bypass the hassle of access 
control in this step.
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2. Back to SageMaker Studio and JumpStart, scroll almost all the way up, back 
to the Train Model section of the model card of Llama 2 7B Chat.
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https://github.com/debbiebastes/BRIGADE/tree/main/Fine-tuning/Sagemaker/train


a. Under Data Source, set the Training data set field to the S3 bucket and 
folder that contains your JSON Lines and template.json files.

b. Leave the Validation data set empty (see known-bug note in item 1.g.)

c. Under Deployment Configuration, you can leave everything at default 
values. Note that this means the training job output (model and logs) will 
be found in the default bucket created by SageMaker.

d. Under Hyper-parameters, we’ll change  a few of the default settings:

i. Chat dataset format: False (since we want Instruction fine-tuning)

ii. Instruction-train the model: True (as above)

iii. Add input output demarcation key: False (our training set already has 
a natural demarcation included as part of the prompts, so this would be 
redundant)

iv. Epochs: 10 (with a rather small training data set, we could use a bit 
more epochs than the default. Figuring out the ideal epoch can be a 
somewhat trial-and-error process)

v. Validation split ratio: 0.25 (we just increased the training and validation 
split ratio so that we get at least 3 samples for validation from our 
training data)
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2. Start the training by clicking the Train button.
a. A new tab in SageMaker Studio will open that looks like this:

b. You can monitor the training job from here. It may take a while before the 
training starts as the instance starts up and is configured.

c. Here’s one error you might encounter, “UnboundLocalError”:
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That error was due to the known-bug we talked about in item 1.g., when a 
validation data set is explicitly used. If you used a validation set and 
encountered this error, just skip the validation set, combine your 
validation data into your training data, and specify an appropriate 
validation split ratio under hyper-parameters.

d. Here’s another common error you might encounter:

This error is caused by having a newline or empty blank line at the end of 
your JSON Lines file. Remove blank lines at the end of your file, reupload 
into your bucket, and try again.
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4. Training job success!

Above is the success screen when a training job completes. You’ll see some 
stats above that measure the effects of the training, based on the training and 
validation sets. 

When the training job is done, the model can be downloaded from your S3 
bucket, and you can deploy it as needed. Just like the vanilla Llama 2 models, this 
fine-tuned model can be used in llama.cpp, converted to gguf format and 
quantizing it to a smaller version.
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Benchmarking our fine-tuned models
Now that we’ve done the fine-tuning process, the real test of success is seeing if 
they have indeed improved their performance for the use case we fine-tuned 
them for, compared to the vanilla (non-fine-tuned) base model.

Running the fine-tuned models through LLM_LocalBench, we see a massive 
increase in adhering to our desired format (% Correct Format). This means we 
can stick with zero-shot (SL prompts) instead of needing few-shot (LL prompts) 
to try to make the LLMs follow the expected format.
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Let’s look at how our fine-tuning affected our inference costs:

Fine-tuning gave us a huge decrease in average input tokens - because our 
fine-tuned models don’t need few-shot learning anymore. 

For Llama 2, since we’re looking at it from a private model perspective, there’s not 
a direct effect of lowering costs since we don’t pay per token. We are saving on 
some VRAM and a little inference time, however, so our inference servers will be 
able to handle a little more volume without scaling up.

We do pay per token for GPT-3.5, so let’s look at how much we’re saving.
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Oops, we aren’t saving money! 

Fine-tuned GPT-3.5 comes with a much higher per-token price tag, so although 
we heavily reduced our token counts, we didn’t end up reducing it enough to 
actually offset the higher price.
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There are two lessons here:

1. Always benchmark your fine-tuned models after the fine-tuning process 
to make sure the training is a success. Don’t just rely on the validation set 
and the training and validation loss metrics.

2. Don’t forget to evaluate the cost impact as well.

In this specific use case, we found that, cost-wise, we’d be better off just 
implementing few-shot learning on the base GPT-3.5 instead of using our own 
fine-tuned model. 

Few-shot gave us comparable performance (accuracy and compliance to output 
format), but for almost 20% less money than using a fine-tuned model.

Fine-tuning can be very powerful, but it requires preparing data and paying for 
the fine-tuning process - both of which can be expensive activities.

Before settling for fine-tuning as the solution to your problem, try prompt 
engineering first. It can be a much smaller lift. 
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Controlling generative AI costs in the enterprise

With our gen AI strategy toolbox complete for this leg of our journey, let’s put 
them all together to highlight essential cost control measures.

Development costs  (R&D, softdev, QA)
➔ For initial R&D, exploratory tinkering and use case development, default to 

public models and per-token billing. In these phases, your LLM usage will 
likely be low enough that per-token billing will be far more cost-effective than 
paying for instances. 

➔ Look at all the different public models that are compatible with your 
enterprise environment. Different platforms offer a variety of models, with 
varying costs.

◆ OpenAI’s GPT-3.5 Turbo is relatively cheap and useful, and is a good 
default for prototyping or exploratory development of use cases.

◆ Bedrock offers models that are around the same cost GPT 3.5-Turbo, or 
even lower. For AWS-centric orgs, this is also a good first step.

◆ Don’t overuse GPT-4 during early development or tinkering phases. It can 
get really expensive, really fast, especially if you are testing long context 
scenarios (e.g., RAG use cases where the information being retrieved and 
added to the prompt is huge, like logs or source code).

◆ The Gen AI Cost Estimator can help you shortlist the first platforms and 
models to test based on estimated cost.

Running the fine-tuned models through LLM_LocalBench again, we see the 
fine-tuning worked! There’s a respectable increase in accuracy (% Score), and an 
absolute massive increase in adhering to our desired format (% Correct Format).
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➔ Identify a team of engineers assigned to the exploration and development of 
LLM use cases. Equipping them to run LLMs locally can be a great way to 
accelerate experimentation without adding a ton of operational costs.

◆ This does not have to be an expensive, brand new equipment purchase for 
a couple thousand of dollars each.

◆ Mid-range laptops that have Nvidia GPUs with as little as 4GB of VRAM are 
relatively cheap, but can already locally run smaller LLMs for 
experimentation. Quantization + llama.cpp + partial GPU layers 
offloading can be your best friend here.

◆ Similarly, any Mac with Apple Silicon (even just M1), and at least 16GB of 
RAM, can comfortably run GPU-accelerated quantized small LLMs locally.

◆ If your team already has such hardware, then they’re ready to go! It’s 
now just a matter of exposure and training.

➔ Remember: fine-tuning is for structure, not facts. Trying to brute-force facts by 
going for huge fine-tuning data sets will likely be expensive, slow and 
ultimately ineffective (the absolute worst combo you could ever report to your 
CFO). 

◆ Small data sets with good examples can be enough. Don’t go overboard. 
Start small, fine-tune + test, and refine and increase the data set as 
needed. Fine-tuning is an iterative process.
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Production costs
➔ Look at all the different public models that are compatible with your 

enterprise environment. Different platforms offer a variety of models, with 
varying costs.

◆ Use the Gen AI Cost Estimator to get an estimate of potential cost for the 
deployment

➔ Deploying specialized smaller private models can help make a wide-scale 
enterprise deployment more CFO-friendly.

◆ See how the per-token billing  costs for your scenario match up against 
having a dedicated LLM instance (through platforms like Hugging Face or 
your favorite Cloud provider)

◆ Remember, though, that deciding on a private model deployment will 
mean extra management overhead that wouldn’t exist compared to public 
model SaaS providers.

➔ Watch out for ballooning costs through RAG.

◆ Particularly for per-token billing, be careful that you don’t overdo your 
RAG information retrieval component. If your RAG adds 3,000 tokens to 
the prompt when a lighter but smarter 500 tokens will do, then you’re 
adding +2,500 input tokens per transaction unnecessarily. 

● For example, don’t just blindly attach 500 lines of logs for analysis. 
Preprocessing the logs (stripping out verbose but known useless lines,
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for example) before it is appended to the prompt might reduce your 
transaction costs significantly without impacting performance. 
Benchmark!

● Experiment with optimizing your enterprise search and vector 
database retrieval results.

◆ For private model hosting, this matters less, but still worth watching out 
for. As the prompt becomes bigger, more memory is used and the prompt 
evaluation will get slower. If it takes more time and memory to handle 
individual requests, then it lowers the effective capacity of your LLM 
instance, forcing you to scale sooner.

➔ Few-shot learning is an awesome prompt engineering technique to make an 
LLM effective for your specific use cases, but keep costs in mind

◆ Just like ballooning RAG costs, few-shot learning costs can creep up on 
you. 

◆ If the few-shot learning examples are just dozens of tokens, then it isn’t a 
big deal.

◆ When they end up being over a thousand tokens or longer, then look for 
ways to make them smaller without sacrificing effectiveness. Benchmark! 

◆ Explore if fine-tuning can be an effective replacement for few-shot learning 
that involves a ton of tokens.
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➔ Quantize!

◆ If you don’t quantize your private model deployments, you are burning 
money.

◆ Make sure quantization begins in development, not in production.
If non-quantized models are used for dev, benchmarking, and QA, but 
then you deploy using a quantized model, you will still save on operational 
costs thanks to slimming down the model, but you will be asking for 
trouble.

➔ Proprietary models are a great way to prototype a feature, and maybe even 
push an MVP into production. Don’t forget Open Source foundation models, 
though.

◆ Over time, expensive proprietary models can be replaced by cheaper 
foundation models.

◆ This means a different set of prompt engineering, benchmarking and QA .

◆ Quantization and fine-tuning are likely going to be essential.

◆ Gradually, specific use cases can be taken over by more cost-optimized 
foundation model deployments.
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➔ Use the most expensive proprietary models like GPT-4 judiciously.

◆ Don’t simply default on using the biggest and most expensive models 
as the backbone of your production features, even though they are 
commonly ranked  in various LLM leaderboards as the “best”.

◆ The evaluations in LLM leaderboards likely don’t translate well to your 
specific enterprise use cases anyway, and you must do your own 
use-case-specific benchmarks.

◆ Instead of using them directly in production, use expensive, more capable 
models like GPT-4 as a way to test and fine-tune smaller, cheaper models. 
These expensive, larger models are excellent for helping you create 
fine-tuning datasets and benchmarking and improving your actual 
production LLMs.

➔ If your production deployment is for an internal tool, consider local hosting 
options.

◆ LLM assistants can be deployed and run locally on employee machines if 
they are already decent (not necessarily high-end).

◆ For privacy-critical deployments, a single powerful local machine in your 
local network can serve as the backbone of your local LLM deployment



Misc infrastructure costs
Whether for Dev or Prod, you’ll also incur some miscellaneous infrastructure 
costs depending on how you deploy your generative AI solution. Keep these in 
mind when designing your generative AI features and solutions:

➔ RAG information retrieval components. 
Enterprise search and vector databases can be a big chunk of your overall 
generative AI solution. Aside from the additional tokens per transaction that 
RAG can potentially add (we already covered that under Production Costs), 
there can also be direct costs from the usage of your enterprise search or 
vector database - either transaction charges from queries done for your 
generative AI solution, or directly paying for new instances.

➔ Data ingestion, processing, and curation.
Especially for a RAG setup, you are probably maintaining an automated 
pipeline where you ingest, process (including vectorization), and curate data, 
to make sure you always have comprehensive and fresh data available for 
your generative AI use cases. These infrastructure costs can be significant, 
depending on your needs.

➔ Logging infrastructure.
It’s likely that you would want to log in detail the prompts and responses from 
your generative AI solution so that you can monitor and review what your 
customers are doing, and how well your LLM is performing over time. 
Depending on how active your generative AI solution is, that additional 
logging cost can be significant, and something you should also benchmark 
with your current logging/monitoring service. 
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How to Run Multiple Fine-Tuned LLMs for the Price of One
LoRA is yet another way to scale LLM deployment, especially when your deployment consists of multiple different 
fine-tuned models.

 

BloombergGPT: A Large Language Model for Finance
What do you get when you take an LLM and train it on a 363 billion tokens from Bloomberg data? 
Cash cash monies, baby! Just kidding. We get a finance-oriented LLM, and the linked paper details their entire 
adventure, from modeling and training to evaluation.

INTERESTING READS AND RESOURCES

Optimizing Your LLM in Production
A Hugging Face blog post about effective techniques for scaling your LLM in production - quantization and 
beyond! Also comes with a Python notebook hosted on Google Colab, providing a hands-on experience.
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Textbooks are All You Need
There are two things I loved about this paper from Microsoft Research. First, it shows that smaller data sets can 
achieve amazing results, as long as they are high-quality; they can even have a significant amount of synthetic data 
(LLM-generated). Second, smaller models can kick ass with great training. #SizeIsntEverything

https://bdtechtalks.com/2023/11/01/llm-fine-tuning-lorax/
https://arxiv.org/abs/2303.17564
https://huggingface.co/blog/optimize-llm


EPILOGUE:
THE JOURNEY AHEAD 
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Let’s wrap up this current journey into generative AI by looking at our progress so 
far in the roadmap:

We tackled five of the eight levels in the roadmap:

❏ Chapter 2 dealt with Level 0 - Prompt engineering

❏ Chapter 3 dealt with Level 1 - Experimentation and tinkering with public 
models
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❏ Chapters 4 and 5 dealt with Level 2 - Experimentation and tinkering with 
private models and foundation models

❏ Chapter 6 dealt with Level 3 - Retrieval augmented generation (RAG), including 
vector databases.

❏ Chapter 7 dealt with Level 5 - Specialized smaller private models

Level 4 was only barely touched in Chapter 6 - just a quick mention of the 
infrastructure and supporting process demands of using vector databases for 
RAG - and Levels 6 & 7 are still ahead of us.

Beyond these untouched levels, there’s still a wealth of generative AI info, as 
updates in this field are incredibly rapid. New prompting techniques, research 
results, foundation models, evaluation methods, services, updated libraries and 
software all come at a breakneck speed.

So while this leg of our current adventure is over, the adventure itself is far from 
over. Generative AI has only just begun. Strap in, because as exciting and as wild 
it may already seem, it’s going to get even wilder - and that means more volumes 
in the BRIGADE book!

In the meantime, if you haven’t already, check out the main companion repo of 
this book: https://github.com/debbiebastes/BRIGADE. Sample codes and data 
sets referenced in this book can be found there.

https://github.com/debbiebastes/BRIGADE


We also referenced other repositories we maintain, and they are also worth 
looking into:

❏ https://github.com/jvroig/llm_localbench  

❏ https://github.com/debbiebastes/llm_localbench_data  

❏ https://github.com/debbiebastes/llm_localbench_results

❏ https://github.com/jvroig/genai_cost_estimator 

Most of these will be continually updated, especially as we continue to run more 
generative AI experiments. If you want a preview of some material that’ll get into 
volume 2, watch these repos!

We tackled five of the eight levels in the roadmap:

❏ Chapter 2 dealt with Level 0 - Prompt engineering

❏ Chapter 3 dealt with Level 1 - Experimentation and tinkering with public 
models
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Thanks for coming along, and see you 
soon in the next volume of the 

BRIGADE book!

https://github.com/jvroig/llm_localbench
https://github.com/debbiebastes/llm_localbench_data
https://github.com/debbiebastes/llm_localbench_results
https://github.com/jvroig/genai_cost_estimator


It’s time to take what you learned, and start to apply it. It’s 
cliché, but the journey of a thousand miles begins with a single 
step. You need to keep practicing, keep creating. Whatever we 
thought we could do – individually, collectively – all bets are off. 
You can get better faster, do more, find and fill your weak spots, 
collaborate better, and learn more than ever before. There are all 
these other superheroes, too, coming into their powers. Doing 
more than we thought possible.

For the enterprise, it is simply a strategic imperative. Even as 
estimates on the economic impact spiral up into the trillions, I 
think they are still low. This is a young technology, rapidly 
maturing on every level (the hardware, the software, the tools, 
and the domain knowledge like what you’ve learned in this book). 
We currently have the 56kbps modem version of AI. That was 
once a high end Internet connection. Now, your phone will go 
thousands of times as fast, without even a wire. That is coming 
for AI, and it’s hard to predict what the world looks like with this 
impact.

It’s a new day. 

Time to put on your cape and 
start creating the future 
with us.

I remember being at AWS re:Invent in 2022 when ChatGPT 
released. I tried it the first day, and it helped me solve a daunting 
problem almost immediately. My ideas became code before my 
eyes. Contextual knowledge summoned as if from an 0racle, with 
context, answered my questions. By the time March came 
around, and the API was opened up, and then GPT-4 came out, it 
was clear the world would never be the same. 

As a kid, I wanted superpowers. When I first saw Superman II, I 
started crying when Superman lost his powers. I've come to 
realize that this is the feeling I get leveraging AI tools - I've been 
given superpowers. You have too. Like Prometheus, we have 
stolen fire from the gods. And like all those origin stories, where 
some inept "hero" with new powers is crashing into the ground or 
accidentally knocking a wall in the house down, we aren't perfect 
with them. And like any superhero story, you and your powers 
are not without weaknesses. But you have the gift - and the 
better you can learn to use them, the more you can do.

If you’ve finished the BRIGADE book, you have a primer. As the 
book says, “Generative AI is something that the enterprise cannot 
– and must not – ignore.”  I appreciate that the BRIGADE book 
speaks to the needed journey, as much as it surveys the 
landscape of the technology.

Afterword

Matt Wallace
Veteran CTO & Tech Executive,
Host of AI Everyday Podcast


